Skip Nav Destination
Close Modal
Search Results for
forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 233
Search Results for forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 321-332, October 22–25, 2013,
... Abstract A 9% Cr steel containing cobalt and boron, X13CrMoCoVNbNB9-2-1, has been manufactured by electroslag remelting (ESR) to evaluate its performance and to compare its creep strength and microstructure to a forging made from electroslag hot-topping ingot. The evaluation results confirm...
Abstract
View Papertitled, Manufacturing of Trial Rotor <span class="search-highlight">Forging</span> of 9%Cr Steel Containing Co and B (X13CrMoCoVNbNB9-2-1) for Ultrasupercritical Steam Turbines
View
PDF
for content titled, Manufacturing of Trial Rotor <span class="search-highlight">Forging</span> of 9%Cr Steel Containing Co and B (X13CrMoCoVNbNB9-2-1) for Ultrasupercritical Steam Turbines
A 9% Cr steel containing cobalt and boron, X13CrMoCoVNbNB9-2-1, has been manufactured by electroslag remelting (ESR) to evaluate its performance and to compare its creep strength and microstructure to a forging made from electroslag hot-topping ingot. The evaluation results confirm that it is possible to produce rotor forgings with homogeneous composition and good properties by the ESR process. The results of creep rupture tests up to 5000 h indicate that the creep strength of the forging made from ESR ingot is similar to that of the forging produced by the electroslag hot-topping process. Martensitic lath microstructures with high density dislocations and the precipitations of M 23 C 6 , VX, NbX and M2X are observed after the quality heat treatments at the center portion of both forgings. There is no large difference in the martensitic lath widths, distributions, and sizes of those particles between both trial forgings.
Proceedings Papers
Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 436-447, October 22–25, 2013,
... determined from the mechanical properties and microstructure. We manufactured an actual-scale rotor model made of TOS1X-2. A 31 ton ingot was manufactured, followed by forging of the model rotor with a diameter of 1100 mm and length of 2400 mm without any defects. Metallurgical and mechanical analyses...
Abstract
View Papertitled, Development and Evaluation of Large-Scale Rotor <span class="search-highlight">Forging</span> for Over 700 °C-Class A-USC Steam Turbine
View
PDF
for content titled, Development and Evaluation of Large-Scale Rotor <span class="search-highlight">Forging</span> for Over 700 °C-Class A-USC Steam Turbine
A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were determined from the mechanical properties and microstructure. We manufactured an actual-scale rotor model made of TOS1X-2. A 31 ton ingot was manufactured, followed by forging of the model rotor with a diameter of 1100 mm and length of 2400 mm without any defects. Metallurgical and mechanical analyses of the model rotor were carried out. All metallurgical and mechanical features of the TOS1X-2 rotor model satisfied the requirements for not only 700°C-class but also over 700°C-class A-USC turbine rotor.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 520-534, October 25–28, 2004,
...., has been continuing the efforts for improvements of production technology, material technology, reliability assessments and so on in order to attain high performance, high efficiency and reliable plants. The efforts gave birth to several epoch-making large and high quality forged components for energy...
Abstract
View Papertitled, Development of Steam Turbine Rotor <span class="search-highlight">Forging</span> for High Temperature Application
View
PDF
for content titled, Development of Steam Turbine Rotor <span class="search-highlight">Forging</span> for High Temperature Application
Growing energy demand promotes the construction of high performance energy plants with large scale. A dramatic increase of plant performance has been achieved by the enlargement of their major components such as turbine rotor shafts and pressure vessels. The Japan Steel Works, Ltd., has been continuing the efforts for improvements of production technology, material technology, reliability assessments and so on in order to attain high performance, high efficiency and reliable plants. The efforts gave birth to several epoch-making large and high quality forged components for energy plants. Recently, on the viewpoint of environmental problem such as global climate change, further development of new production technology and improvement of material has been continued. This paper gives an overview of the development of large high-quality forgings for high efficiency power generation plants.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, February 25–28, 2025,
... Abstract In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe...
Abstract
View Papertitled, Assessment of a Grade 91 Steel <span class="search-highlight">Forging</span> and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
View
PDF
for content titled, Assessment of a Grade 91 Steel <span class="search-highlight">Forging</span> and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 644-655, October 11–14, 2016,
... in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team...
Abstract
View Papertitled, Qualification of UNS N07028 for <span class="search-highlight">Forged</span> Steam Turbine Rotors
View
PDF
for content titled, Qualification of UNS N07028 for <span class="search-highlight">Forged</span> Steam Turbine Rotors
The US Advanced Ultra-Supercritical (A-USC) Consortium conducted an extensive program to evaluate available superalloys for use in rotors for steam turbines operating at a nominal temperature of 760 °C (1400 °F). Alloys such as 282, Waspaloy, 740H, 720Li, and 105 were tested in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team was established consisting of GE Power (project management and testing), Wyman-Gordon (forging and testing) and Special Metals (melting and billetizing) to pursue the work. A research license to melt the alloy was obtained from Haynes International. The first step of the development was to devise a triple melt (VIM-ESR-VAR) practice to produce 610 mm (24 inch) diameter ingot. Two ingots were made, the first to define the VAR remelting parameters and the second to make the test ingot utilizing optimum conditions. Careful attention was paid to ingot structure to ensure that no solidification segregation occurred. A unique homogenization practice for the alloy was developed by the US Department of Energy (DOE) and National Energy Technology Laboratory (NETL). Billetization was performed on an open die press with three upset and draw stages. This procedure produced an average grain size of ASTM 3. A closed die forging practice was developed based on compressive flow stress data developed by Wyman Gordon Houston for the consortium project. Multiple 18 kg forgings were produced to define the forging parameters that yielded the desired microstructure. The project culminated with a 2.19 metric ton (4830 lb), 1.22 m (48 inch) diameter crack-free pancake forging produced on Wyman Gordon’s 50,000 ton press in Grafton, MA. The forging process produced a disk with an average grain size of ASTM 8 or finer. Forging cut-up, microstructural characterization, and mechanical property testing was performed by GE Power. Fatigue and fracture toughness values of the disk forging exceeded those previously reported for commercially available rolled bar.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 656-667, October 11–14, 2016,
... “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed...
Abstract
View Papertitled, New Material and Manufacturing Developments for USC and A-USC Steam Turbine Rotor <span class="search-highlight">Forgings</span>
View
PDF
for content titled, New Material and Manufacturing Developments for USC and A-USC Steam Turbine Rotor <span class="search-highlight">Forgings</span>
COST FB2 steel alloyed with boron is currently the best available martensitic 9% Cr steel for turbine shafts subjected to steam temperatures up to 620°C and meanwhile introduced into production for application in commercial power plants. Currently several development programs are running to develop materials for further increase of application temperature up to 650°C. For realization of a 650ºC power plant not only creep strength, but also resistance against steam oxidation must be improved by increase of Cr content up to 11-12%. In the past all attempts to develop stable creep resistant martensitic 11-12% Cr steels for 650°C failed due to breakdown in long-term creep strength. Therefore new alloy concepts have been developed by replacing the fine nitride strengthening particles by controlled and accelerated precipitation of the more stable Z phase. Therefore the European project “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed the temperature limit of 650°C, only nickel base alloys can be used. One of the most promising candidate alloys for rotor forgings subjected to steam temperatures of 700°C is Alloy 617, which was already intensively investigated. For still higher temperatures in the range of 750°C only γ‘-precipitation hardened nickel base alloys, such as Alloy 263, can be applied. Therefore the “NextGenPower” project was launched and aimed at manufacture and demonstration of parts from Ni-based alloys for application in steam power plants at 750°C. One of the main goals was to develop turbine rotor materials and to demonstrate manufacturability of forgings for full scale turbine rotor parts. Contributing to this project, Saarschmiede has produced for the first time a large rotor forging in the Ni base Alloy 263. Numeric simulations of ingot manufacture, forging and heat treatment have been performed and a large trial rotor forging in Alloy 263 with a diameter of 1000 mm was successfully produced from a triple melt ingot. Experiences in manufacture and test results are presented.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 778-789, October 11–14, 2016,
... impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components...
Abstract
View Papertitled, 9-10% Cr Steel <span class="search-highlight">Forgings</span> for USC Turbines - Experiences in Manufacturing and Development Status of MARBN Steels
View
PDF
for content titled, 9-10% Cr Steel <span class="search-highlight">Forgings</span> for USC Turbines - Experiences in Manufacturing and Development Status of MARBN Steels
Sufficient energy availability in combination with lowest environmental pollution is a basic necessity for a high living standard in each country. To guarantee power supply for future generations, improved technologies to achieve higher efficiency combined with reduced environmental impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components for the power generation industry. This paper reports about experiences in the fabrication of forged components for steam turbines for ultra-supercritical application - from basic properties up to ultrasonic detectability results. The materials used so far are the highly creep-resistant martensitic 9-10% Cr steel class for operating temperatures up to 625°C developed in the frame of the European Cost research program. Additionally our research activities on the latest generation of high temperature resistant steels for operating temperatures up to 650 degree Celsius – the boron containing 9% Cr martensitic steels (MARBN) - are discussed. In order to improve the creep behavior, MARBN steels with different heat treatments and microstructures were investigated using optical microscopy, SEM and EBSD. Furthermore, short term creep rupture tests at 650 degree Celsius were performed, followed by systematic microstructural investigations. As a result it can be concluded, that advanced microstructures can increase the time to rupture of the selected MARBN steels by more than 10 percent.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 281-292, October 22–25, 2013,
... for the need of power plants with improved technologies to achieve higher efficiency combined with reduced environmental impact. In order to realize this goal it is not only a challenge for power station manufacturers, but also for manufacturers of special steels and forgings, who have to produce improved...
Abstract
View Papertitled, Gas and Steam Turbine <span class="search-highlight">Forgings</span> for High Efficiency Fossil Power Plants
View
PDF
for content titled, Gas and Steam Turbine <span class="search-highlight">Forgings</span> for High Efficiency Fossil Power Plants
Sufficient available energy in combination with lowest environmental pollution is a basic necessity for a high standard of living in every country. In order to guarantee power supply for future generations it is necessary to use fossil fuels as efficient as possible. This fact calls for the need of power plants with improved technologies to achieve higher efficiency combined with reduced environmental impact. In order to realize this goal it is not only a challenge for power station manufacturers, but also for manufacturers of special steels and forgings, who have to produce improved components with more advanced materials and more complex manufacturing processes. This paper reports about experiences in the fabrication of forged components for gas and steam turbines followed by achievable mechanical properties and ultrasonic detectability results. The materials are the creep resistant martensitic Cr steels developed in the frame of the European Cost research programme. Whereas Boron containing 10% Cr steels are suitable for steam temperatures of 625°C and slightly higher, Ni-based alloys shall be used for temperatures of 700°C and above. One pilot rotor forging, representing a HP-rotor for welded construction, has been manufactured out of alloy Inconel 625 within the frame of the European Thermie project AD700.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 293-303, October 22–25, 2013,
... Abstract Microstructural change of 10 % Cr steel trial forgings subjected to different heat treatment conditions which aim to improve the creep rupture strength and microstructural stability during creep was investigated. Creep rupture strength of the forging subjected to the quality heat...
Abstract
View Papertitled, Microstructural Change after Long-Term Creep Exposure in High Cr Steel <span class="search-highlight">Forgings</span> for Ultrasupercritical Steam Turbine Rotors
View
PDF
for content titled, Microstructural Change after Long-Term Creep Exposure in High Cr Steel <span class="search-highlight">Forgings</span> for Ultrasupercritical Steam Turbine Rotors
Microstructural change of 10 % Cr steel trial forgings subjected to different heat treatment conditions which aim to improve the creep rupture strength and microstructural stability during creep was investigated. Creep rupture strength of the forging subjected to the quality heat treatment with the austenitizing temperature of 1090° C is higher than that of the forging solution treated at 1050°C, however, the difference of creep rupture strength is reduced in the long-term region around 40,000 h. Decrease in creep rupture ductility of the forging until 43,300 h is not observed. Progress of the martensite lath recovery in the forging solution-treated at 1090°C is slower than that in the forging austenitized at 1050°C. Higher temperature solution treatment suppresses the recovery of lath structures. Formations of Z-phase are found in the specimens creep-ruptured at 37,300 h in the forging solution-treated at 1050°C and at 43,400 h in the forging austenitized at 1090°C. Z-phase precipitation behavior in this steel is delayed in comparison with the boiler materials, regardless of austenitizing temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 304-320, October 22–25, 2013,
..., Rotor E, a steel composition created during the COST programs (501, 522, and 536), has become a commercially available product. While traditionally forged and remelted using electroslag remelting (ESR), this paper demonstrates the successful production of large rotor components using a conventional...
Abstract
View Papertitled, Experience in Manufacture of High Chromium <span class="search-highlight">Forged</span> Rotor Steels
View
PDF
for content titled, Experience in Manufacture of High Chromium <span class="search-highlight">Forged</span> Rotor Steels
Driven by the need to reduce CO 2 emissions through increased steam temperature and pressure in new power plants, research in Europe led to the development of enhanced high-chromium steels with improved creep resistance and service temperature stability. After years of development, Rotor E, a steel composition created during the COST programs (501, 522, and 536), has become a commercially available product. While traditionally forged and remelted using electroslag remelting (ESR), this paper demonstrates the successful production of large rotor components using a conventional process without ESR, achieved through tailored process control. This paper details Società delle Fucine's (SdF) current production of Rotor E using a conventional route based on ladle furnace and vacuum degassing, as well as the mechanical and creep behaviors of the resulting forged products. Additionally, SdF produced a prototype FB2 rotor using a conventional process. FB2, a 10% Cr steel containing cobalt and boron but lacking tungsten, emerged from the COST 522 program as the best candidate for scaling up from a laboratory experiment to a full-sized industrial component. Notably, the addition of boron effectively improved the microstructure's stability and consequently enhanced the creep resistance of these new, advanced martensitic steels. Finally, the paper will present updates on the long-term characterization program for the FB2 steel trial rotor.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 448-458, October 22–25, 2013,
... Abstract The European Cost programmes have led to the development of improved creep resistant 9%-Cr-steels alloyed with boron, which are designed for turbine shafts subjected to steam temperatures up to 620°C. The production of forgings in steel Cost FB2 for application in power plants has...
Abstract
View Papertitled, Rotor <span class="search-highlight">Forgings</span> for Steam Turbines with High Efficiency
View
PDF
for content titled, Rotor <span class="search-highlight">Forgings</span> for Steam Turbines with High Efficiency
The European Cost programmes have led to the development of improved creep resistant 9%-Cr-steels alloyed with boron, which are designed for turbine shafts subjected to steam temperatures up to 620°C. The production of forgings in steel Cost FB2 for application in power plants has commenced. Production experience and results are presented in the paper. Beyond that, Saarschmiede participates in projects targeting at steam temperatures above 700°C. In the frame of a Japanese development programme the worldwide largest trial shaft in a modified Alloy 617 Ni-Base material has been manufactured successfully from a 31 t- ESR ingot. Manufacturing route and results are presented. Contributing to the European NextGenPower project Saarschmiede has started activities to produce a large rotor forging in Alloy 263. Simulations of main manufacturing steps have been performed and a large trial forging has been produced from a triple melt ingot. First results are presented.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 506-519, October 25–28, 2004,
... temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings...
Abstract
View Papertitled, Experiences in Manufacturing and Long-Term Mechanical and Microstructural Testing of 9-12% Chromium Steel <span class="search-highlight">Forgings</span> for Power Generation Plants
View
PDF
for content titled, Experiences in Manufacturing and Long-Term Mechanical and Microstructural Testing of 9-12% Chromium Steel <span class="search-highlight">Forgings</span> for Power Generation Plants
Within the pursuit of improved economic electricity production with reduced environmental pollution, the European research activities COST 501/522 aimed to develop advanced 9-12%Cr steels for highly stressed turbine components by increasing thermal efficiency through higher steam temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings of this COST grade E steel. Secondly, it reports on the manufacturing of a trial melt of a later 9%Cr steel containing cobalt and boron from COST development, describing its long-term creep behavior, microstructural features responsible for superior creep resistance, and test results including short-term properties, detectable flaw size, and initial creep results for a full-size trial rotor forging.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 552-558, October 25–28, 2004,
... producing nickel and cobalt-base alloy forgings for applications like aircraft engines, aerospace, land-based gas turbines, and offshore. This paper reports on the manufacturing and testing of large-section forgings made from candidate nickel-base alloys like 617 and 625 for high-pressure/intermediate...
Abstract
View Papertitled, Superalloy <span class="search-highlight">Forgings</span> for Advanced High Temperature Power Plants
View
PDF
for content titled, Superalloy <span class="search-highlight">Forgings</span> for Advanced High Temperature Power Plants
Improving power plant efficiency through supercritical steam pressures and very high steam temperatures up to 700°C and beyond is an effective approach to reducing fuel consumption and CO2 emissions. However, these extreme steam temperatures necessitate the use of nickel-base alloys in the high-pressure/intermediate-pressure turbine sections requiring very large component sections that cannot be met by steels. Saarschmiede, involved in manufacturing large components for the power generation industry and research programs on advanced 9-12% chromium steels, has extensive experience producing nickel and cobalt-base alloy forgings for applications like aircraft engines, aerospace, land-based gas turbines, and offshore. This paper reports on the manufacturing and testing of large-section forgings made from candidate nickel-base alloys like 617 and 625 for high-pressure/intermediate-pressure turbine components in power stations operating at 700°C and higher steam temperatures.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 559-574, October 25–28, 2004,
... chromium steels, Saarschmiede utilizes the Electro-Slag-Remelting process, allowing ingots up to 165 tons. Optimized forging and heat treatment procedures ensure reproducible forging properties. All products undergo rigorous destructive and non-destructive testing. creep properties electro-slag...
Abstract
View Papertitled, High Temperature Steel <span class="search-highlight">Forgings</span> for Power Generation
View
PDF
for content titled, High Temperature Steel <span class="search-highlight">Forgings</span> for Power Generation
Steels with 9-12% chromium content are widely used in steam turbines operating above 550°C due to their improved creep properties. Saarschmiede has extensive experience manufacturing high chromium steels, such as the X12CrMoWVNbN10-11-1 steel designed through the European COST program for application up to 610°C (COST Rotor E). From this steel, Saarschmiede produces high-pressure rotor shafts and gas turbine discs. To meet ever-increasing steam temperatures, a modified steel type with elevated boron content was developed, and pilot rotors have been manufactured. For ingot manufacturing of high chromium steels, Saarschmiede utilizes the Electro-Slag-Remelting process, allowing ingots up to 165 tons. Optimized forging and heat treatment procedures ensure reproducible forging properties. All products undergo rigorous destructive and non-destructive testing.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 86-95, August 31–September 3, 2010,
... energy production. austenitic stainless steel boilers coal fired power plants creep rupture test forgings metallurgical characterization nickel-based alloys test rig turbine components Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International...
Abstract
View Papertitled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and <span class="search-highlight">Forgings</span> Made of Alloys for Future High Efficient Power Plants
View
PDF
for content titled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and <span class="search-highlight">Forgings</span> Made of Alloys for Future High Efficient Power Plants
This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant in Mannheim, Germany, simulates extreme conditions of up to 725°C and 350/200 bar pressure. After approximately 2000 hours of operation, the paper presents an overview of the rig's design, its integration into the existing plant, and the status of ongoing tests. It also outlines parallel material investigations, including creep rupture tests, mechanical-technological testing, and metallurgical characterization. This research is crucial for the development of materials capable of withstanding the severe conditions in next-generation power plants, potentially improving efficiency and performance in future energy production.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 408-422, August 31–September 3, 2010,
... Abstract 10CrMoWVNbN (X 12 CrMoWVNbN 10 1 1) steel trial forgings has been manufactured to clarify the effect of austenitizing temperature on the creep rupture strength and microstructure. From the results of creep rupture tests up to 30,000 hours, higher austenitizing temperature improves...
Abstract
View Papertitled, Creep Rupture Strength and Microstructural Investigation of 12 % Cr Steel Large <span class="search-highlight">Forgings</span> for Ultra-Supercritical Steam Turbine Rotors
View
PDF
for content titled, Creep Rupture Strength and Microstructural Investigation of 12 % Cr Steel Large <span class="search-highlight">Forgings</span> for Ultra-Supercritical Steam Turbine Rotors
10CrMoWVNbN (X 12 CrMoWVNbN 10 1 1) steel trial forgings has been manufactured to clarify the effect of austenitizing temperature on the creep rupture strength and microstructure. From the results of creep rupture tests up to 30,000 hours, higher austenitizing temperature improves the rupture strength without large degradation of the rupture ductility. The microstructural investigations demonstrate that the prior austenite grain size and the precipitation behavior of fine M2X particles are presumed to contribute to the improvement of creep rupture strength.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 436-449, August 31–September 3, 2010,
... the turbine and in parts of the boiler. boilers ferritic stainless steel forgings fossil power plants nickel-chromium-cobalt-molybdenum alloys steam temperature turbine parts Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International Conference August 31...
Abstract
View Papertitled, Advanced <span class="search-highlight">Forgings</span> for Highly Efficient Fossil Power Plants
View
PDF
for content titled, Advanced <span class="search-highlight">Forgings</span> for Highly Efficient Fossil Power Plants
In Europe and Japan, great efforts are currently being invested in the development of materials designed to increase the steam temperature in fossil power plants. In the steel segment, the COST program is concentrating on 10% Cr steels with the addition of boron with the aim of achieving a steam temperature of 650°C. With nickel-based materials, the goal is to achieve steam temperatures of 700°C and higher. Alloy 617 has proved to be a very promising candidate in this field and a modified version is currently being developed in Japan. Materials of this type are used in both the turbine and in parts of the boiler.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 353-365, October 3–5, 2007,
... Abstract The global transition toward high-efficiency steam power plants demands increasingly advanced steel rotor forgings capable of operating at temperatures of 600°C and above. The European Cost program has been instrumental in developing creep-resistant 10%-chromium steels...
Abstract
View Papertitled, High Chromium Steel <span class="search-highlight">Forgings</span> for Steam Turbines at Elevated Temperatures
View
PDF
for content titled, High Chromium Steel <span class="search-highlight">Forgings</span> for Steam Turbines at Elevated Temperatures
The global transition toward high-efficiency steam power plants demands increasingly advanced steel rotor forgings capable of operating at temperatures of 600°C and above. The European Cost program has been instrumental in developing creep-resistant 10%-chromium steels for these critical applications, with Steel Cost E emerging as a prominent material now widely utilized in steam turbine shafts and experiencing significant market growth. Saarschmiede has pioneered a robust, fail-safe manufacturing procedure for Cost E rotors, establishing a comprehensive database of mechanical properties and long-term performance data that enhances turbine design reliability. The company has expanded its manufacturing capabilities to include Cost F rotor forgings for high-pressure and intermediate-pressure turbines, with component weights reaching up to 44 tonnes. Investigating methods to further increase application temperatures, researchers within the Cost program discovered the potential benefits of boron additions to 10%-chromium steels. Leveraging this insight, Saarschmiede has produced full-size trial rotors to develop and refine production procedures, with these prototype components currently undergoing extensive testing to validate their performance and potential for advanced high-temperature applications.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 391-401, October 3–5, 2007,
... Abstract Demand of 9-12% chromium steel rotor forgings becomes higher from point of view of environmental protection in coal fired fossil power generations. Japan Casting & Forging Corporation (JCFC) has manufactured 9-12% Cr steel rotor forgings with JCFC's original techniques since 1991...
Abstract
View Papertitled, Manufacturing Experiences and Investigation of Properties of 12% Cr Steel <span class="search-highlight">Forgings</span> for Steam Turbines
View
PDF
for content titled, Manufacturing Experiences and Investigation of Properties of 12% Cr Steel <span class="search-highlight">Forgings</span> for Steam Turbines
Demand of 9-12% chromium steel rotor forgings becomes higher from point of view of environmental protection in coal fired fossil power generations. Japan Casting & Forging Corporation (JCFC) has manufactured 9-12% Cr steel rotor forgings with JCFC's original techniques since 1991. Recently, type E steel developed by European COST program has been trial melted to meet the demand of such high Cr steel forgings in the world. Full size two forgings have been manufactured from approximately 70 ton ingot applying Electro Slag Hot Topping by JCFC (ESHT-J) process. One of the trial forgings has been austenitized at higher temperature in the quality heat treatment to improve long term creep strength. Their productivities and sufficient qualities have been ascertained.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 424-433, October 3–5, 2007,
... Abstract To develop 10-ton class forgings with adequate long-term strength and without segregation defects for A-USC steam turbine rotors, researchers modified the chemical composition of Alloy 706 to improve its microstructure stability and segregation properties. The modified Alloy, named...
Abstract
View Papertitled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large <span class="search-highlight">Forgings</span>
View
PDF
for content titled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large <span class="search-highlight">Forgings</span>
To develop 10-ton class forgings with adequate long-term strength and without segregation defects for A-USC steam turbine rotors, researchers modified the chemical composition of Alloy 706 to improve its microstructure stability and segregation properties. The modified Alloy, named FENIX-700, is a γ' phase strengthened alloy without a γ" phase, and its microstructure stability is superior to Alloy 706 at 700°C, as demonstrated by short-term aging tests and phase stability calculations using the CALPHAD method. A trial disk 1-ton class forging of FENIX-700 was manufactured from a double-melted ingot, with tensile and creep strength of the forging equivalent to that of 10-kg class forgings, indicating a successful trial. Long-duration creep tests were performed using 10-kg class forgings, revealing an approximate 105-hour creep strength at 700°C higher than 100 MPa. Manufacturability tests showed that FENIX-700 performs better than Alloy 706, as evidenced by segregation tests using a horizontal directional solidification furnace and hot workability tests. Microstructure observation and tensile tests on 10,000-hour aged specimens (at temperatures of 650, 700, and 750°C) revealed degradation of tensile strength and yield stress due to coarsening of the γ' phase, but also showed enhanced ductility through aging. The microstructure stability of FENIX-700 at 700°C was confirmed as excellent through microstructure observation of the 10,000-hour aged sample and supporting thermodynamic considerations.
1