Skip Nav Destination
Close Modal
Search Results for
fired steam power plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 239
Search Results for fired steam power plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 900-911, October 11–14, 2016,
... Diffractometer (XRD). Mass change data have been examined every 250 hours. A-USC coal-fired power plants austenitic stainless steel high temperature oxidation test nickel based alloys scanning electron microscopy coupled with energy dispersive spectrometry steam oxidation resistance X-ray...
Abstract
View Papertitled, <span class="search-highlight">Steam</span> Oxidation Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal <span class="search-highlight">Fired</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, <span class="search-highlight">Steam</span> Oxidation Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal <span class="search-highlight">Fired</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
The A-USC technology is still under development due to limited number of materials complying with the requirements of high creep strength and high performance in highly aggressive corrosion environments. Development of power plant in much higher temperatures than A-USC is currently impossible due to the materials limitation. Currently, nickel-based superalloys besides advanced austenitic steels are the viable candidates for some of the A-USC components in the boiler, turbine, and piping systems due to higher strength and improved corrosion resistance than standard ferritic or austenitic stainless steels. The paper, presents the study performed at 800 °C for 3000 hours on 3 advanced austenitic steels; 309S, 310S and HR3C with higher than 20 Cr wt% content and 4 Ni-based alloys including: two solid-solution strengthened alloys (Haynes 230), 617 alloy and two (γ’) gamma - prime strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray Diffractometer (XRD). Mass change data have been examined every 250 hours.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 51-67, October 25–28, 2004,
... on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high...
Abstract
View Papertitled, Materials Developments for Ultrasupercritical <span class="search-highlight">Steam</span> Turbines
View
PDF
for content titled, Materials Developments for Ultrasupercritical <span class="search-highlight">Steam</span> Turbines
Power generation technology selection is driven by factors such as cost, fuel supply security, and environmental impact. Coal remains a popular choice due to its global availability, but efficient, reliable, and cost-effective methods are essential. In Europe, efforts focus on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components, leading to a full demonstration plant. This systematic approach to materials development and proven design principles ensures operational reliability.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies. corrosion resistance creep rupture strength fabricability fatigue characteristics fired steam power plants fossil power plants fracture mechanics...
Abstract
View Papertitled, Nickel Alloys for High Efficiency Fossil <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, Nickel Alloys for High Efficiency Fossil <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1-10, August 31–September 3, 2010,
... Abstract This paper examines the ongoing significance of pulverized coal-fired steam plants in global power generation, focusing on technological advancements and strategies for improving efficiency and reducing CO 2 emissions. It traces the development of Ultra-Supercritical (USC) plants...
Abstract
View Papertitled, The European Perspective on Technology Development for Advanced USC <span class="search-highlight">Steam</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, The European Perspective on Technology Development for Advanced USC <span class="search-highlight">Steam</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
This paper examines the ongoing significance of pulverized coal-fired steam plants in global power generation, focusing on technological advancements and strategies for improving efficiency and reducing CO 2 emissions. It traces the development of Ultra-Supercritical (USC) plants with steam temperatures around 600°C and explores immediate opportunities for further efficiency enhancements, including the innovative Master Cycle. The potential for increasing steam temperatures to 650°C using new steels and to 700°C with nickel-based AD 700 technology is discussed. The paper outlines a comprehensive strategy for CO 2 emission reduction: maximizing plant efficiency, co-firing with CO 2 -neutral fuels, and integrating with district heating/cooling or industrial heat consumers. Carbon capture and storage techniques are presented as a final step in this multi-faceted approach to sustainable power generation.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 338-352, October 3–5, 2007,
... will be implemented in several new coal-fired power plants, notably the Hempstead plant in the USA, which will operate with live steam temperatures of 599°C (1111°F) and reheat steam temperatures of 607°C (1125°F). The improved creep properties enable the construction of casings with reduced wall thicknesses...
Abstract
View Papertitled, Material Development and Mechanical Integrity Analysis for Advanced <span class="search-highlight">Steam</span> Turbines
View
PDF
for content titled, Material Development and Mechanical Integrity Analysis for Advanced <span class="search-highlight">Steam</span> Turbines
Development activities initiated over a decade ago within the COST 522 program and continuing through the COST 536 Action have yielded significant progress in constructing a new generation of steam power plants capable of operating under advanced steam conditions. These innovative plants promise substantially improved thermal efficiency, with steam temperatures reaching up to 620°C (1150°F). Recent successful power plant orders in Europe and the United States stem from critical advancements, including the development, testing, and qualification of 10% Cr steels with enhanced long-term creep properties for high-temperature components such as turbine rotors and valve casings. Extensive in-house development efforts have focused on fabrication, weldability, mechanical integrity, and fracture mechanics evaluations of full-sized forged and cast components. These materials will be implemented in several new coal-fired power plants, notably the Hempstead plant in the USA, which will operate with live steam temperatures of 599°C (1111°F) and reheat steam temperatures of 607°C (1125°F). The improved creep properties enable the construction of casings with reduced wall thicknesses, offering greater thermal flexibility at lower component costs and facilitating welded turbine rotors for high-temperature applications without requiring cooling in the steam inlet region. Looking forward, further efficiency improvements are anticipated through the introduction of nickel alloys in steam turbine and boiler components, with the European AD700 project targeting reheat steam temperatures of 720°C (1328°F) and the US Department of Energy project aiming even higher at 760°C (1400°F). The AD700 project has already demonstrated the technical feasibility of such advanced steam power plants, with engineering tasks progressing toward the construction of a 550 MW demonstration plant, while DOE activities continue to address boiler concerns and focus on rotor welding, mechanical integrity, and steam oxidation resistance.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, February 25–28, 2025,
... Abstract A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project...
Abstract
View Papertitled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C <span class="search-highlight">Steam</span> Conditions
View
PDF
for content titled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C <span class="search-highlight">Steam</span> Conditions
A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project, primarily funded by the U.S. Department of Energy and Ohio Coal Development Office between 2015 and 2023, focused on validating the manufacture of commercial-scale components for an 800 megawatt power plant operating at 760°C and 238 bar steam conditions. The project scope encompassed fabrication of full-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME Code Stamp approval for nickel-based alloy pressure relief valves. This comprehensive effort successfully established technical readiness for commercial-scale A-USC demonstration plants while developing a U.S.-based supply chain and providing more accurate cost estimates for future installations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+ A-UCS fossil fire power plant in china is emphasized, including newly innovated G115 martensitic steel used for 630 steam...
Abstract
View Papertitled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
View
PDF
for content titled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
... Abstract Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC...
Abstract
View Papertitled, Update on United States Advanced Ultra-Supercritical Component Test Project for 760 °C <span class="search-highlight">Steam</span> Conditions
View
PDF
for content titled, Update on United States Advanced Ultra-Supercritical Component Test Project for 760 °C <span class="search-highlight">Steam</span> Conditions
Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC ComTest) to help achieve technical readiness to allow the construction of a commercial scale A-USC demonstration power plant. Among the goals of the ComTest project are to validate that components made from the advanced alloys can be designed and fabricated to perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for key A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. This project is intended to bring A-USC technology to the commercial scale demonstration level of readiness by completing the manufacturing R&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar (3500 psia).The A-USC ComTest project scope includes fabrication of full scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office under a prime contract with the Energy Industries of Ohio, with co-funding from the power industry participants, General Electric, and the Electric Power Research Institute, has completed the detailed engineering phase of the A-USC ComTest project, and is currently engaged in the procurement and fabrication phase of the work. This paper will outline the motivation for the effort, summarize work completed to date, and detail future plans for the remainder of the A-USC ComTest project.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
... an combustion environment in coal-fired steam power plants [10]. The weight change was measured in every 500h cycle. The creep-rupture test was conducted in a range of 650-800ºC 630 and 30-150MPa in laboratory air. Tensile tests of ASTM-E8 specimens were conducted from room temperature to 800ºC in laboratory...
Abstract
View Papertitled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
View
PDF
for content titled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 993-1000, October 3–5, 2007,
... of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design. boiler design boiler tubes chemical concentration carbon dioxide emission fireside corrosion fouling oxycombustion oxygen-fired supercritical boilers steam...
Abstract
View Papertitled, Design Considerations for Advanced Materials in Oxygen-<span class="search-highlight">Fired</span> Supercritical and Ultra-Supercritical Pulverized Coal Boilers
View
PDF
for content titled, Design Considerations for Advanced Materials in Oxygen-<span class="search-highlight">Fired</span> Supercritical and Ultra-Supercritical Pulverized Coal Boilers
As the demand for worldwide electricity generation grows, pulverized coal steam generator technology is expected to be a key element in meeting the needs of the utility power generation market. The reduction of greenhouse gas emissions, especially CO 2 emissions, is vital to the continued success of coal-fired power generation in a marketplace that is expected to demand near-zero emissions in the near future. Oxycombustion is a technology option that uses pure oxygen, and recycled flue gas, to fire the coal. As a result, this system eliminates the introduction of nitrogen, which enters the combustion process in the air, and produces a highly-concentrated stream of CO 2 that can readily be captured and sequestered at a lower cost than competing post-combustion capture technologies. Oxycombustion can be applied to a variety of coal-fired technologies, including supercritical and ultra-supercritical pulverized coal boilers. The incorporation of oxycombustion technology in these systems raises some new technical challenges, especially in the area of advanced boiler materials. Local microclimates generated near and at the metal interface will influence and ultimately govern corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling characteristics in the superheater and heat recovery sections of the steam generator. The continuous recirculation of the flue gases in the boiler, may lead to increasing concentrations of deleterious elements such as sulfur, chlorine, and moisture. This paper identifies the materials considerations of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
...) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally...
Abstract
View Papertitled, A <span class="search-highlight">Steam</span> Generator for 700C to 760C Advanced Ultra-Supercritical Design and <span class="search-highlight">Plant</span> Arrangement: What Stays the Same and What Needs to Change
View
PDF
for content titled, A <span class="search-highlight">Steam</span> Generator for 700C to 760C Advanced Ultra-Supercritical Design and <span class="search-highlight">Plant</span> Arrangement: What Stays the Same and What Needs to Change
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
... advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from...
Abstract
View Papertitled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and <span class="search-highlight">Steam</span> Turbine
View
PDF
for content titled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and <span class="search-highlight">Steam</span> Turbine
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 1-15, October 3–5, 2007,
... funded by US Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) promises to increase the efficiency of pulverized coal-fired power plants by as much as nine percentage points, with an associated reduction of CO 2 emissions by about 22% compared to current subcritical steam power...
Abstract
View Papertitled, U.S. Program on Materials Technology for Ultrasupercritical Coal-<span class="search-highlight">Fired</span> Boilers
View
PDF
for content titled, U.S. Program on Materials Technology for Ultrasupercritical Coal-<span class="search-highlight">Fired</span> Boilers
One of the pathways for achieving the goal of utilizing the available large quantities of indigenous coal, at the same time reducing emissions, is by increasing the efficiency of power plants by utilizing much higher steam conditions. The US Ultra-Supercritical Steam (USC) Project funded by US Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) promises to increase the efficiency of pulverized coal-fired power plants by as much as nine percentage points, with an associated reduction of CO 2 emissions by about 22% compared to current subcritical steam power plants, by increasing the operating temperature and pressure to 760°C (1400°F) and 35 MPa (5000 psi), respectively. Preliminary analysis has shown such a plant to be economically viable. The current project primarily focuses on developing the materials technology needed to achieve these conditions in the boiler. The scope of the materials evaluation includes mechanical properties, steam-side oxidation and fireside corrosion studies, weldability and fabricability evaluations, and review of applicable design codes and standards. These evaluations are nearly completed, and have provided the confidence that currently-available materials can meet the challenge. While this paper deals with boiler materials, parallel work on turbine materials is also in progress. These results are not presented here in the interest of brevity.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 53-64, August 31–September 3, 2010,
... Abstract A recent engineering design study conducted by the Electric Power Research Institute (EPRI) has compared the cost and performance of an advanced ultra-supercritical (A-USC) pulverized coal (PC) power plant with main steam temperature of 700°C to that of conventional coal-fired power...
Abstract
View Papertitled, Economic Analysis of Advanced Ultra-Supercritical Pulverized Coal <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>: A Cost-Effective CO 2 Emission Reduction Option?
View
PDF
for content titled, Economic Analysis of Advanced Ultra-Supercritical Pulverized Coal <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>: A Cost-Effective CO 2 Emission Reduction Option?
A recent engineering design study conducted by the Electric Power Research Institute (EPRI) has compared the cost and performance of an advanced ultra-supercritical (A-USC) pulverized coal (PC) power plant with main steam temperature of 700°C to that of conventional coal-fired power plant designs: sub-critical, supercritical, and current USC PC plants with main steam temperatures of 541°, 582°, and 605°C, respectively. The study revealed that for a US location in the absence of any cost being imposed for CO 2 emissions the A-USC design was a slightly more expensive choice for electricity production. However, when the marginal cost of the A-USC design is compared to the reduction in CO 2 emissions, it was shown that the cost of the avoided CO 2 emissions was less than $25 per metric ton of CO 2 . This is significantly lower than any technology currently being considered for CO 2 capture and storage (CCS). Additionally by lowering CO 2 /MWh, the A-USC plant also lowers the cost of CCS once integrated with the power plant. It is therefore concluded that A-USC technology should be considered as one of the primary options for minimizing the cost of reducing CO 2 emissions from future coal power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 459-467, October 22–25, 2013,
... Abstract Carbon Capture and Storage (CCS) has become promising technology to reduce CO 2 emissions. However, as a consequence of CCS installation, the electrical efficiency of coal fired power plant will drop down. This phenomenon requires increase in base efficiency of contemporary power...
Abstract
View Papertitled, Similar and Dissimilar Welding of Nickel-Based Superalloys for A-USC <span class="search-highlight">Steam</span> Turbine Rotors in NextGenPower Project
View
PDF
for content titled, Similar and Dissimilar Welding of Nickel-Based Superalloys for A-USC <span class="search-highlight">Steam</span> Turbine Rotors in NextGenPower Project
Carbon Capture and Storage (CCS) has become promising technology to reduce CO 2 emissions. However, as a consequence of CCS installation, the electrical efficiency of coal fired power plant will drop down. This phenomenon requires increase in base efficiency of contemporary power plants. Efficiency of recent generation of power plants is limited mainly by maximum live steam temperature of 620°C. This limitation is driven by maximal allowed working temperatures of modern 9–12% Cr martensitic steels. Live steam temperatures of 750°C are needed to compensate the efficiency loss caused by CCS and achieve a net efficiency of 45%. Increase in the steam temperature up to 750°C requires application of new advanced materials. Precipitation hardened nickel-based superalloys with high creep-rupture strength at elevated temperatures are promising candidates for new generation of steam turbines operating at temperatures up to 750°C. Capability to manufacture full-scale forged rotors and cast turbine casings from nickel-based alloys with sufficient creep-rupture strength at 750°C/105 hours is investigated. Welding of nickel-based alloys in homogeneous or heterogeneous combination with 10% Cr martensitic steel applicable for IP turbine rotors is shown in this paper. Structure and mechanical properties of prepared homogeneous and heterogeneous weld joints are presented.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 867-876, October 11–14, 2016,
... Abstract Most effective method to increase the boiler efficiency and decrease emissions is to increase the steam temperature of modern coal-fired power plants. The increase in the steam temperature of the AUSC power plants will require higher grade heat-resistant materials to support the long...
Abstract
View Papertitled, High Temperature Oxidation of Austenitic Steels and Nickel-Based Alloys in <span class="search-highlight">Steam</span> Environment
View
PDF
for content titled, High Temperature Oxidation of Austenitic Steels and Nickel-Based Alloys in <span class="search-highlight">Steam</span> Environment
Most effective method to increase the boiler efficiency and decrease emissions is to increase the steam temperature of modern coal-fired power plants. The increase in the steam temperature of the AUSC power plants will require higher grade heat-resistant materials to support the long-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 602-622, October 25–28, 2004,
... Abstract Current state-of-the-art coal-fired supercritical steam power plants operate with high-pressure turbine inlet steam temperatures close to 600°C. The best of the recently developed and commercialized advanced 9-12Cr martensitic-ferritic steels may allow prolonged use at temperatures...
Abstract
View Papertitled, Defining the Materials Issues and Research needs for Ultra-Supercritical <span class="search-highlight">Steam</span> Turbines
View
PDF
for content titled, Defining the Materials Issues and Research needs for Ultra-Supercritical <span class="search-highlight">Steam</span> Turbines
Current state-of-the-art coal-fired supercritical steam power plants operate with high-pressure turbine inlet steam temperatures close to 600°C. The best of the recently developed and commercialized advanced 9-12Cr martensitic-ferritic steels may allow prolonged use at temperatures to about 620°C, but such steels are probably close to their inherent upper temperature limit. Further increase in the temperature capability of advanced steam turbines will certainly require the use of Ni-based superalloys and system redesign, as seen in the European programs that are pioneering advanced power plants capable of operating with 700°C steam. The U.S. Department of Energy (DOE) has recently undertaken a concerted effort to qualify ultra-supercritical boiler tubing and piping alloys for 720/760°C steam for increased efficiency and reduced emissions. It is, therefore, necessary to develop the corresponding USC steam turbine, also capable of reliable operation at such conditions. This paper summarizes a preliminary assessment made by the Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) of materials needed for ultra-supercritical (USC) steam turbines, balancing both technical and business considerations. These efforts have addressed an expanded portfolio of alloys, that includes austenitic stainless steels and alloys, in addition to various Ni-based superalloys for critical turbine components. Preliminary input from utilities indicates that cost-effective improvements in performance and efficiency that do not sacrifice durability and reliability are prime considerations for any advanced steam turbine technology.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 60-73, October 22–25, 2013,
... Abstract Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam...
Abstract
View Papertitled, Advantages of A-USC for CO 2 Capture in Pulverized Coal Units
View
PDF
for content titled, Advantages of A-USC for CO 2 Capture in Pulverized Coal Units
Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam temperature requires that the materials for the boiler pressure parts and steam turbine be upgraded to high-nickel alloys that are more expensive than alloys typically used in existing PC units. This paper explores the economics of A-USC units operating between 595°C and 760°C (1100°F to 1400°F) with no CO 2 removal and with partial capture of CO 2 at an emission limit of 454 kg CO 2 /MW-hr (1000 lb CO 2 /MW-hr) on a gross power basis. The goal of the paper is to understand if the improved efficiency of A-USC would reduce the cost of electricity compared to conventional ultra-supercritical units, and estimate the economically “optimal” steam temperature with and without CO 2 removal.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 46-58, October 3–5, 2007,
... materials market. carbon dioxide emission ferritic chromium steel nickel-base superalloys nickel-chromium austenitic steel steam boilers steam temperature steam turbines thermal efficiency ultra-super-critical power plants Advances in Materials Technology for Fossil Power Plants Proceedings...
Abstract
View Papertitled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
View
PDF
for content titled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
The rapid development of Chinese economy (recently in the order of 10%/year) is requiring sustainable growth of power generation to meet its demand. In more than half century after the foundation of People's Republic of China, the Chinese power industry has reached a high level. Up to now, the total installed capacity of electricity and annual overall electricity generation have both jumped to the 2 nd position in the world, just next to United States. A historical review and forecast of China electricity demand to the year of 2010 and 2020 will be introduced. Chinese power plants as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants with the steam temperature up to 600°C or higher will get a rapid development. The first two series of 2×1000MW USC power units with the steam parameters 600°C, 26.25MPa have been put into service in November and December 2006 respectively. In recent years more than 30 USC power units will be installed in China. USC power plant development will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing. Among those materials the modified 9- 12%Cr ferritic steels, Ni-Cr austenitic steels and a part of nickel-base superalloys have been paid special attention in Chinese materials market.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 491-503, October 22–25, 2013,
... Abstract The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels...
Abstract
View Papertitled, Advances in Nickel Alloy Casting Production for +700 °C Applications
View
PDF
for content titled, Advances in Nickel Alloy Casting Production for +700 °C Applications
The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels just don’t have enough strength, and typically have a temperature limit of around 620°C (possibly up to 650°C in the near future) in the HP environment. Therefore, material development has focused on nickel alloys. European programs such as AD700, COMTES, European 50+ and more recently, NextGen Power and Macplus, have investigated the use of nickel alloys in the steam turbine. Large castings have an important role within the steam turbine, because valves bodies and turbine casings are nearly always produced from a cast component. The geometry of these components is often complex, and therefore, the advantage of using castings for such items is that near net shapes can be produced with minimal machining. This is important, as nickel alloys are expensive, and machining is difficult, so castings offer an attractive cost benefit. Cast shapes can be more efficiently designed with regards to stress management. For example, contouring of fillet regions can help to reduce stress concentrations leads to reduced plant maintenance and casting complex shapes reduces the number of onsite fabrication welds to inspect during outage regimes.
1