Skip Nav Destination
Close Modal
Search Results for
fatigue resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 196
Search Results for fatigue resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1-10, October 21–24, 2019,
... Abstract Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure...
Abstract
View Papertitled, “Reactive” Microstructure—The Key to Cost-Effective, <span class="search-highlight">Fatigue</span>-<span class="search-highlight">Resistant</span> High-Temperature Structural Materials
View
PDF
for content titled, “Reactive” Microstructure—The Key to Cost-Effective, <span class="search-highlight">Fatigue</span>-<span class="search-highlight">Resistant</span> High-Temperature Structural Materials
Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure of conventional and novel steels were investigated in thermo-mechanical fatigue and fatigue crack propagation experiments. Based on the results, improved, ferritic “HiperFer” (High performance Ferrite) steels were designed, produced and characterized. A brief description of the current state of development is given.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 403-411, October 25–28, 2004,
... during the creep-fatigue test, while block size did not change. It is suggested that the growth of grain boundary precipitates and coarse subgrains plays an important role in the intergranular fracture mechanism caused by creep-fatigue. creep-fatigue test ferritic heat-resisting steel field...
Abstract
View Papertitled, Characterization of Multi-Scale Structures for a Creep-<span class="search-highlight">Fatigued</span> Ferritic Heat-<span class="search-highlight">Resisting</span> Steel
View
PDF
for content titled, Characterization of Multi-Scale Structures for a Creep-<span class="search-highlight">Fatigued</span> Ferritic Heat-<span class="search-highlight">Resisting</span> Steel
Microstructural analyses by FE-SEM and TEM were performed on a ferritic heat-resisting steel that contained 12mass% chromium and 2mass% tungsten to characterize its multi-scale structure, consisting of prior austenite grains, packets, blocks, subgrains and precipitates. The size distributions of the block, subgrains and precipitates were quantitatively evaluated before and after a creep-fatigue test to relate them to their creep-fatigue property. Our results showed that the occupancy of precipitates on prior austenite grain boundaries increased markedly and subgrains became coarse during the creep-fatigue test, while block size did not change. It is suggested that the growth of grain boundary precipitates and coarse subgrains plays an important role in the intergranular fracture mechanism caused by creep-fatigue.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 718-732, October 3–5, 2007,
...-fatigue conditions. Recommendations are given to support the use of different fracture mechanics parameters in order to describe the long-term crack behavior under creep and/or creep-fatigue conditions. creep-fatigue crack growth crack initiation crack propagation heat-resistant steel edge...
Abstract
View Papertitled, Long-Term Crack Behavior under Creep and Creep-<span class="search-highlight">Fatigue</span> Conditions of Heat <span class="search-highlight">Resistant</span> Steels
View
PDF
for content titled, Long-Term Crack Behavior under Creep and Creep-<span class="search-highlight">Fatigue</span> Conditions of Heat <span class="search-highlight">Resistant</span> Steels
High temperature components with notches, defects and flaws may be subject to crack initiation and crack propagation under long-term service conditions. To study these problems and to support an advanced remnant life evaluation, fracture mechanics procedures are required. Since a more flexible service mode of power plants causes more start up and shut down events as well as variable loading conditions, creep-fatigue crack behavior becomes more and more decisive for life assessment and integrity of such components. For steam power plant forged and cast components, the crack initiation time and crack growth rate of heat resistant steels were determined in long-term regime up to 600 °C. Component-like double edge notched tension specimens have been examined. The results are compared to those obtained using the standard compact tension specimen. Crack initiation time and crack growth rate have been correlated using the fracture mechanics parameter C*. The applicability of the stress intensity factor K I to describe the creep crack behavior is also being assessed. A modified Two-Criteria-Diagram was applied and adapted in order to recalculate crack initiation times under creep-fatigue conditions. Recommendations are given to support the use of different fracture mechanics parameters in order to describe the long-term crack behavior under creep and/or creep-fatigue conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1351-1360, October 21–24, 2019,
... be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness...
Abstract
View Papertitled, Low Cycle <span class="search-highlight">Fatigue</span> Properties and Impact Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
View
PDF
for content titled, Low Cycle <span class="search-highlight">Fatigue</span> Properties and Impact Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness at temperatures ranging from -196…100°C of advanced 10% Cr martensitic steel with high B and low N contents. The effect of new alloying scheme and corresponding peculiarities of M 23 C 6 carbides on the low cycle fatigue resistance and impact toughness of the 10%Cr martensitic steel is analyzed. It is revealed that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 517-527, February 25–28, 2025,
...), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making...
Abstract
View Papertitled, <span class="search-highlight">Fatigue</span> Properties of High-Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, <span class="search-highlight">Fatigue</span> Properties of High-Performance Ferritic (HiperFer) Steels
High-performance Ferritic (HiperFer) steels represent a promising materials innovation for next-generation thermal energy conversion systems, particularly in cyclically operating applications like concentrating solar thermal plants and heat storage power plants (Carnot batteries), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making them potentially transformative for future energy technologies. This paper examines the microstructural mechanisms underlying HiperFer’s enhanced fatigue resistance in both short and long crack propagation, while also presenting current findings on salt corrosion properties and exploring potential alloying improvements for fusion reactor applications, highlighting the broad technical relevance of these innovative materials.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 107-118, October 3–5, 2007,
... power plants will require the use of nickel-based superalloys having the required combination of high-temperature creep strength, oxidation resistance, thermal fatigue resistance, thermal stability, and fabricability. Haynes 230 and 282 alloys are two materials that meet all of these criteria...
Abstract
View Papertitled, Materials Solutions for Advanced Steam Power Plants
View
PDF
for content titled, Materials Solutions for Advanced Steam Power Plants
Significant research efforts are underway in Europe, Japan, and the U.S. to develop the technology to increase the steam temperature in fossil power plants in order to achieve greater efficiency and reduce the amount of greenhouse gases emitted. The realization of these advanced steam power plants will require the use of nickel-based superalloys having the required combination of high-temperature creep strength, oxidation resistance, thermal fatigue resistance, thermal stability, and fabricability. Haynes 230 and 282 alloys are two materials that meet all of these criteria. The metallurgical characteristics of each alloy are described in detail, and the relevant high-temperature properties are presented and discussed in terms of potential use in advanced steam power plants.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 487-503, August 31–September 3, 2010,
... be exercised in the way such diagrams are interpreted to compare the creep-fatigue resistances of different alloy types. The form of such damage diagrams is dependent, not only on the analytical procedures used to define the respective fatigue and creep damage fractions, but also on both the deformation...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> in Steam Turbine Materials
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> in Steam Turbine Materials
The creep-fatigue properties of steam turbine materials such as the 1%CrMoV steel traditionally adopted for steam inlet temperatures up to ~565°C, the newer advanced 9-11%Cr steels for applications up to ~600°C, and the nickel based Alloy 617 for potential use to >700°C are reviewed, in particular with reference to their cyclic/hold test crack initiation endurances. The results of cyclic/hold creep-fatigue tests are commonly employed to establish the damage summation diagrams used to form the basis of a number of creep-fatigue assessment procedures, and it is demonstrated that care should be exercised in the way such diagrams are interpreted to compare the creep-fatigue resistances of different alloy types. The form of such damage diagrams is dependent, not only on the analytical procedures used to define the respective fatigue and creep damage fractions, but also on both the deformation and damage interaction mechanisms displayed by the material.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
... evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants. chromium-nickel-tungsten alloys creep rupture strength creep test Laves...
Abstract
View Papertitled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
View
PDF
for content titled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
The development of materials technologies for piping and tubing in advanced ultrasupercritical (A-USC) power plants operating at steam temperatures above 700°C represents a critical engineering challenge. The 23Cr-45Ni-7W alloy (HR6W), originally developed in Japan as a high-strength tubing material for 650°C ultra-supercritical (USC) boilers, was systematically investigated to evaluate its potential for A-USC plant applications. Comparative research with γ-strengthened Alloy 617 revealed that the tungsten content is intimately correlated with Laves phase precipitation and plays a crucial role in controlling creep strength. Extensive creep rupture tests conducted at temperatures between 650-800°C for up to 60,000 hours demonstrated the alloy's long-term stability, with 105-hour extrapolated creep rupture strengths estimated at 88 MPa at 700°C and 64 MPa at 750°C. Microstructural observations after creep tests and aging confirmed the material's microstructural stability, which is closely linked to long-term creep strength and toughness. While Alloy 617 exhibited higher creep rupture strength at 700 and 750°C, the materials showed comparable performance at 800°C. Thermodynamic calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces...
Abstract
View Papertitled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
View
PDF
for content titled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 644-655, October 11–14, 2016,
... in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team...
Abstract
View Papertitled, Qualification of UNS N07028 for Forged Steam Turbine Rotors
View
PDF
for content titled, Qualification of UNS N07028 for Forged Steam Turbine Rotors
The US Advanced Ultra-Supercritical (A-USC) Consortium conducted an extensive program to evaluate available superalloys for use in rotors for steam turbines operating at a nominal temperature of 760 °C (1400 °F). Alloys such as 282, Waspaloy, 740H, 720Li, and 105 were tested in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team was established consisting of GE Power (project management and testing), Wyman-Gordon (forging and testing) and Special Metals (melting and billetizing) to pursue the work. A research license to melt the alloy was obtained from Haynes International. The first step of the development was to devise a triple melt (VIM-ESR-VAR) practice to produce 610 mm (24 inch) diameter ingot. Two ingots were made, the first to define the VAR remelting parameters and the second to make the test ingot utilizing optimum conditions. Careful attention was paid to ingot structure to ensure that no solidification segregation occurred. A unique homogenization practice for the alloy was developed by the US Department of Energy (DOE) and National Energy Technology Laboratory (NETL). Billetization was performed on an open die press with three upset and draw stages. This procedure produced an average grain size of ASTM 3. A closed die forging practice was developed based on compressive flow stress data developed by Wyman Gordon Houston for the consortium project. Multiple 18 kg forgings were produced to define the forging parameters that yielded the desired microstructure. The project culminated with a 2.19 metric ton (4830 lb), 1.22 m (48 inch) diameter crack-free pancake forging produced on Wyman Gordon’s 50,000 ton press in Grafton, MA. The forging process produced a disk with an average grain size of ASTM 8 or finer. Forging cut-up, microstructural characterization, and mechanical property testing was performed by GE Power. Fatigue and fracture toughness values of the disk forging exceeded those previously reported for commercially available rolled bar.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 520-530, October 3–5, 2007,
... oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels...
Abstract
View Papertitled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
View
PDF
for content titled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650°C for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 303-319, October 3–5, 2007,
..., technological properties, and microstructure of welded joints produced at RAFAKO S.A. The extensive research program encompassed a broad range of tests on both parent material and welded joints, including mechanical property assessments at room temperature, creep resistance evaluations, low-cycle fatigue...
Abstract
View Papertitled, Microstructure and Mechanical Properties Characteristics of Welded Joints Made of Creep-<span class="search-highlight">Resistant</span> Steel with 12% Cr, Vanadium, Tungsten, and Cobalt Additions
View
PDF
for content titled, Microstructure and Mechanical Properties Characteristics of Welded Joints Made of Creep-<span class="search-highlight">Resistant</span> Steel with 12% Cr, Vanadium, Tungsten, and Cobalt Additions
This paper presents comprehensive test results of thick-walled VM12 steel pipes containing 12% chromium, vanadium, and tungsten, with cobalt addition. The primary objective was to verify welding technologies for boiler superheater thick-walled components and characterize the strength, technological properties, and microstructure of welded joints produced at RAFAKO S.A. The extensive research program encompassed a broad range of tests on both parent material and welded joints, including mechanical property assessments at room temperature, creep resistance evaluations, low-cycle fatigue testing at room temperature and 600°C (1120°F), and detailed macro- and microstructural examinations. Furthermore, the investigation included a comprehensive microstructural stability assessment using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), conducted after fatigue resistance testing at room and elevated temperatures, following additional annealing at 700°C (1,920°F), and after 1,000 hours of exposure for both parent material and welded joints. These investigations were conducted as part of the COST 536 Action, representing a collaborative effort to understand and characterize high-temperature creep-resistant steels like VM12 for advanced power generation applications.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 723-734, February 25–28, 2025,
... used to produce a functionally graded fitting that provides increased oxidation, carburization, creep, and thermal fatigue resistance. Three welding wire compositions have been designed based on thermodynamic and kinetic modeling techniques to address the appropriate corrosion resistance and mechanical...
Abstract
View Papertitled, Weldability Evaluation of Computationally Designed Filler Wires for Wire-Arc Additive Manufacturing of Functionally Graded Materials in Harsh Service Environments
View
PDF
for content titled, Weldability Evaluation of Computationally Designed Filler Wires for Wire-Arc Additive Manufacturing of Functionally Graded Materials in Harsh Service Environments
Olefin furnaces contain gravity cast U-bend fittings from Fe-Ni-Cr alloys that can experience premature failures due to a combination of harsh service conditions. The fittings undergo steep temperature variations during startup and shutdown, outer diameter (OD) oxidation from furnace flue gases, and inner diameter (ID) carburization from process fluids. As a result, cracking often occurs along large solidification grain boundaries from interconnected networks of carbides and secondary phases. To address these degradation concerns, Wire Arc Additive Manufacturing (WAAM) is being used to produce a functionally graded fitting that provides increased oxidation, carburization, creep, and thermal fatigue resistance. Three welding wire compositions have been designed based on thermodynamic and kinetic modeling techniques to address the appropriate corrosion resistance and mechanical properties needed in the OD, Core, and ID regions of the U- bend fitting cross-section. A Fe-35Cr-45Ni-0.7Nb solid welding wire is being used for the Core section, and metal-cored welding wires based around this composition with additions of Si or Al are being used for the OD and ID sections, respectively. This study involved weldability evaluation focused on understanding the microstructures and potential additive manufacturing printability challenges associated with graded WAAM structures using these welding wires. To achieve this, Cast Pin Tear Testing (CPTT) was performed to evaluate solidification cracking susceptibility of the welding wires. Additionally, Scheil calculations were performed in Thermo-Calc software to predict solidification microstructures. To validate the results, SEM characterization was conducted on cast buttons of each welding wire to identify phases in the respective microstructures. These unique data will help inform WAAM design parameters needed to produce a Functionally Graded Material (FGM) that improves the lifetime of Fe-Ni-Cr U-bend fittings in olefin furnaces.?
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 809-817, October 3–5, 2007,
... or fatigue resistance. Other factors such as heat affected zone (HAZ) cracking, crater cracking, solidification cracking or adverse ferrite content are normally associated with welding or the welding consumable used. There is a proven and nearly forgotten weld filler metal and formulation approach which...
Abstract
View Papertitled, 16-8-2 and Other Weld Metal Compositions that Utilize Controlled Residual Elements to Enhance and Maintain Elevated Temperature Creep Strength
View
PDF
for content titled, 16-8-2 and Other Weld Metal Compositions that Utilize Controlled Residual Elements to Enhance and Maintain Elevated Temperature Creep Strength
Achieving high temperature creep strength while maintaining rupture ductility in weld metal for austenitic stainless steel weldments has always been challenging. In the late 1940's and early 1950's, independent work in both Europe and the USA resulting in what is known today as the 16-8-2 (nominally16% chromium -8% nickel -2% molybdenum) stainless steel weld metal. Philo 6 and shortly thereafter at Eddystone used the alloy to construct the first supercritical boilers and piping in the USA. Concurrent with domestic boiler and piping fabrication, the US Navy was also using this material for similar supercritical applications. Over the decades, enhanced performance has evolved with variations of the basic composition and by adding specific residual elements. Controlled additions of P, B, V, Nb and Ti have been found to greatly enhance elevated temperature as well as cryogenic behavior. The history of these developments, example compositions and areas of use as well as mechanical property results are presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 35-46, October 21–24, 2019,
... such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material. fatigue...
Abstract
View Papertitled, In Situ Measurement of Particulate Erosion Damage on Additively Manufactured IN718
View
PDF
for content titled, In Situ Measurement of Particulate Erosion Damage on Additively Manufactured IN718
The measurement of damage from high temperature solid particle erosion (HTSPE) can be a lengthy process within the laboratory with many lab-based systems requiring sequential heat and cooling of the test piece to enable mass and/or scar volume measurements to be made ex situ. Over the last few years a new lab-based system has been in development at the National Physical Laboratory which has the ability to measure the mass and volume change of eroded samples in situ without the need to cool the sample. Results have previously been shown demonstrating the in situ mass measurement, more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability to manufacture low volume complex parts and has been used in rapid prototyping. As the technique has developed there is increasing interest to take advantage of the ability to manufacture complex parts in one piece, which in some case can be more cost and time effective than traditional manufacturing routes. For all the benefits of SLM there are some constraints on the process, these include porosity and defects in the materials such as ‘kissing bonds’, surface roughness, trapped powder and microstructural variation. These features of the processing route may have implications for component performance such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1018-1026, October 11–14, 2016,
...,Cr,Si)2(Nb,W) Laves particle strengthening [9], which enables creep strength potential beyond grade 92 and steam oxidation resistance superior to 12 wt% Cr AFM steels [8, 10] in combination with favourable thermomechanical fatigue resistance [8, 11]. Specialized (thermo)mechanical processing...
Abstract
View Papertitled, Development Status of High Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, Development Status of High Performance Ferritic (HiperFer) Steels
High chromium HiperFer (High performance ferritic) materials present a promising concept for the development of high temperature creep and corrosion resistant steels. The institute for Microstructure and Properties of Materials (IEK-2) at Forschungszentrum Jülich GmbH, Germany develops high strength, Laves phase forming, fully ferritic steels which feature excellent resistance to steam oxidation and better creep life than state of the art 9-12 Cr steels. Mechanical strength properties of these steels depend not only on chemical composition, but can be adapted to various applications by specialized thermo(mechanical) treatment. The paper will outline the sensitivity of tensile, creep, stress relaxation and impact properties on processing and heat treatment. Furthermore an outlook on future development potentials will be derived.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1081-1092, October 22–25, 2013,
... resistance in combination with adequate creep and thermomechanical fatigue strength seems to be mandatory. The steam oxidation, mechanical and thermomechanical properties of fully ferritic 18 - 24 wt.-% chromium model alloys, strengthened by the precipitation of intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase...
Abstract
View Papertitled, Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases
View
PDF
for content titled, Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases
Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense of the strengthening precipitates, and therefore suffer an accelerated decline in strength during longterm operation. While the concept of ferritic-martensitic chromium steels thus seems to hit technological limitations, further improvement in steam power plant efficiency necessitates a further increase of steam pressure and temperature. Furthermore increasing integration of intermitting renewable energy technologies in electrical power generation poses a great challenge for supply security, which has to be ensured on the basis of conventional power plant processes. Besides improved efficiency for resource preservation, load flexibility, thermal cycling capability and downtime corrosion resistance will play key roles in the design of tailored materials for future energy technology. Under these preconditions a paradigm shift in alloy development towards improvement of cyclic steam oxidation and downtime corrosion resistance in combination with adequate creep and thermomechanical fatigue strength seems to be mandatory. The steam oxidation, mechanical and thermomechanical properties of fully ferritic 18 - 24 wt.-% chromium model alloys, strengthened by the precipitation of intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase particles, indicate the potential of this type of alloys as candidate materials for application in highly efficient and highly flexible future supercritical steam power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 570-579, October 21–24, 2019,
... material was degraded, the resistance against crack propagation was reduced, while in the region where stress was relaxed, the crack driving force was lowered. creep deformation crystal nickel-base superalloys fatigue crack propagation gas turbines material degradation Joint EPRI 123HiMAT...
Abstract
View Papertitled, A Unique Influence of Creep Deformation on the Subsequent <span class="search-highlight">Fatigue</span> Crack Propagation in a Single Crystal Ni-Base Superalloy
View
PDF
for content titled, A Unique Influence of Creep Deformation on the Subsequent <span class="search-highlight">Fatigue</span> Crack Propagation in a Single Crystal Ni-Base Superalloy
Single crystal Ni-base superalloys are subjected to tension hold at high temperature in addition to cyclic loading during the operation of gas turbines. Various studies have investigated creep-fatigue crack propagation in superalloys under trapezoidal loadings and evaluated the life time based on parameters such as creep J-integral. However, it is still unclear how damage field and stress-strain condition change at the crack tip during hold time, and how it affects on fatigue crack propagation. In this study, the influence of the tension hold and accompanying creep at crack tip on subsequent fatigue crack propagation behavior was evaluated by introducing single tension holds into pure cyclic loadings. The series of the experiments revealed that because of the tension hold, material degradation and stress relaxation occurred simultaneously ahead of crack tip. In the region where material was degraded, the resistance against crack propagation was reduced, while in the region where stress was relaxed, the crack driving force was lowered.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... the corrosion resistance of the steel substrate, ultimately alloy 625 was shown to be susceptible to circumferential cracking ascribed to a corrosion fatigue mechanism, whereby preferential corrosion occurred along dendrite cores in the weld deposit, which were depleted of Nb and Mo due to segregation...
Abstract
View Papertitled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler Tubing Life
View
PDF
for content titled, Nickel Chromium Alloy Claddings for Extension of Fossil-Fueled Boiler Tubing Life
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 750-761, October 21–24, 2019,
... size distribution typically improves the fatigue resistance of A286 at room temperature and to some extent at elevated temperatures as well. Considering that discs and expander wheels are machined out of forgings, it is necessary to impart enough hot work during the forging process to refine the grain...
Abstract
View Papertitled, A286 Applications in Turbo Machineries—Experiences in Fabrication, In-Service Evaluation, and Failure Analysis
View
PDF
for content titled, A286 Applications in Turbo Machineries—Experiences in Fabrication, In-Service Evaluation, and Failure Analysis
The A286 is one of the earliest superalloys developed. It has been used for manufacturing different components of turbo machineries because of its balanced high temperature properties. These components include shafts, discs, spacers, blades and fasteners. This paper reviews some of the issues and recent field experiences related to metallurgy, fabrication, in-service evaluation and failure of some of these components. The fabrication aspects including the effects of alloy melting processes, forging parameters and different types of heat treatments on the processed parts are discussed. The importance of these factors on the microstructure and properties of A286 are highlighted. The effects of service exposure on some of these parts are also discussed. In service evaluation involves checking for service induced damage or changes in microstructures and properties so that the suitability of the part for continued service can be determined. The failure analysis section of the paper briefly discusses failures of two expander wheels and an expander disc made out of A286 to pinpoint some of the salient features of damage accumulation and fracture during service.
1