Skip Nav Destination
Close Modal
Search Results for
fatigue life
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 178
Search Results for fatigue life
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 149-160, October 11–14, 2016,
... waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied. advanced ultrasupercritical power plants creep damage evaluation creep-fatigue life nickel-chromium-cobalt-molybdenum...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> <span class="search-highlight">Life</span> and Damage Evaluation of Ni-Based Alloy 617 and Alloy 740H
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> <span class="search-highlight">Life</span> and Damage Evaluation of Ni-Based Alloy 617 and Alloy 740H
Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 748-761, October 3–5, 2007,
... Abstract Enhanced life assessment methods contribute to the long-term operation of high-temperature components by reducing technical risks and increasing economic benefits. This study investigates creep-fatigue behavior under multi-stage loading, including cold start, warm start, and hot start...
Abstract
View Papertitled, Improved Methods of Creep-<span class="search-highlight">Fatigue</span> <span class="search-highlight">Life</span> Assessment of Components
View
PDF
for content titled, Improved Methods of Creep-<span class="search-highlight">Fatigue</span> <span class="search-highlight">Life</span> Assessment of Components
Enhanced life assessment methods contribute to the long-term operation of high-temperature components by reducing technical risks and increasing economic benefits. This study investigates creep-fatigue behavior under multi-stage loading, including cold start, warm start, and hot start cycles, as seen in medium-loaded power plants. During hold times, creep and stress relaxation accelerate crack initiation. Creep-fatigue life can be estimated using a modified damage accumulation rule that incorporates the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage while accounting for mean stress effects, internal stress, and creep-fatigue interaction. In addition to generating advanced creep, fatigue, and creep-fatigue data, scatter band analyses are necessary to establish design curves and lower-bound properties. To improve life prediction methods, further advancements in deformation and lifetime modeling are essential. Verification requires complex experiments under variable creep conditions and multi-stage creep-fatigue interactions. A key challenge remains the development of methods to translate uniaxial material properties to multiaxial loading scenarios. Additionally, this study introduces a constitutive material model, implemented as a user subroutine for finite element applications, to simulate start-up and shut-down phases of components. Material parameter identification has been achieved using neural networks.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1207-1215, February 25–28, 2025,
... the corresponding relationship model by establishing the relationship between the relaxation stress ratio and the strain and the relationship between the relaxation stress ratio and the failure life. This model can be used to predict the creep-fatigue interaction life more simply and directly. creep-fatigue...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> Interaction <span class="search-highlight">Life</span> and Prediction Model Based on Stress Relaxation Ratio of Nickel-Based Superalloy 617
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> Interaction <span class="search-highlight">Life</span> and Prediction Model Based on Stress Relaxation Ratio of Nickel-Based Superalloy 617
Creep-fatigue tests strain-controlled with different strain amplitudes and different hold times at 725 were done on nickel-based alloy 617 as a typical candidate material for turbine rotor of advanced ultra-supercritical power plant. Stress relaxes during the hold time when the strain remains at the tensile peak. The analysis of the stress relaxation during different strain hold times shows that the ratio of the relaxation stress and the maximum stresses has strong correlation with strain amplitude and hold time. The failure life also has a certain dependence on the relaxation stress ratio. The failure life decreases and the relaxation stress ratio increases as the strain amplitude increases. The failure life decreases and the relaxation stress ratio increases as the hold time increases. Therefore the stress relaxation ratio was used as an intermediate variable to obtain the corresponding relationship model by establishing the relationship between the relaxation stress ratio and the strain and the relationship between the relaxation stress ratio and the failure life. This model can be used to predict the creep-fatigue interaction life more simply and directly.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 571-583, August 31–September 3, 2010,
... only slightly reduced the pure fatigue properties of Alloy 617, but significantly decreased its life under creep-fatigue conditions. The creep-fatigue life of ex-service welds was reduced to less than one-third of that of virgin parent metal. The data suggests that the introduction of a tensile hold...
Abstract
View Papertitled, The Effect of Service Aging on the Creep-<span class="search-highlight">Fatigue</span> Properties of Alloy 617 Parent Metal and Welds
View
PDF
for content titled, The Effect of Service Aging on the Creep-<span class="search-highlight">Fatigue</span> Properties of Alloy 617 Parent Metal and Welds
To enhance power plant efficiency, global projects aim to increase operating temperatures to 700 °C (1292 °F) and beyond, surpassing the capabilities of conventional ferritic and austenitic steel alloys and necessitating the use of nickel-based alloys like Alloy 617. This study evaluated the fatigue and creep-fatigue performance of Alloy 617, including both parent metal and welds, at 650 °C (1202 °F). Tests were conducted on virgin material, service-aged samples (up to 25,000 hours), and material over-aged at 800 °C (1472 °F) for 1,000 hours. Results indicated that service aging only slightly reduced the pure fatigue properties of Alloy 617, but significantly decreased its life under creep-fatigue conditions. The creep-fatigue life of ex-service welds was reduced to less than one-third of that of virgin parent metal. The data suggests that the introduction of a tensile hold period impacts Alloy 617's life more than Alloy 263 but less than Alloy 740, potentially linked to the cyclic strength of the alloys. The reduction in life for Alloy 617 is notably greater than that observed in conventional ferritic alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through...
Abstract
View Papertitled, Rejuvenation and <span class="search-highlight">Life</span> Assessment of IN 738 Blades after Long-Term Service
View
PDF
for content titled, Rejuvenation and <span class="search-highlight">Life</span> Assessment of IN 738 Blades after Long-Term Service
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1304-1312, October 22–25, 2013,
... in reduction of area, which leads to reduction in creep strength with brittleness. Difference between the two mechanisms affects creep-fatigue strength. The study also shows that the equation based on the fracture energy model for creep-fatigue life can be obtained by a parallel translation of that for creep...
Abstract
View Papertitled, Evaluation of Reduction in Creep Strength Based on Fracture Energy in CSEF Steels
View
PDF
for content titled, Evaluation of Reduction in Creep Strength Based on Fracture Energy in CSEF Steels
In power plants operated at elevated temperatures, the operating life of structural materials increases. Therefore, it is very important to be able to predict creep strength in long term above 100,000 h. Furthermore, it has been reported that in the long term, the actual creep strength is lower than the predicted life. Although this problem has been analysed, the reasons remain unclear. In this study, a fracture energy model is used to evaluate the mechanisms of the creep strength reduction for martensitic steels. In the model, changes in fracture energy with rupture time are expressed by a power law. The energy density rate is calculated using stress, rupture elongation, and rupture time. The model indicates two mechanisms of creep strength reduction. One is the increase in rupture elongation, which leads to reduction in creep strength with ductility; the other is the decrease in reduction of area, which leads to reduction in creep strength with brittleness. Difference between the two mechanisms affects creep-fatigue strength. The study also shows that the equation based on the fracture energy model for creep-fatigue life can be obtained by a parallel translation of that for creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
... temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified...
Abstract
View Papertitled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
View
PDF
for content titled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 450-469, August 31–September 3, 2010,
... Abstract A research program has been initiated to develop the first predictive methodology for corrosion fatigue life in steam turbine blades, addressing a critical gap in current understanding despite extensive research into corrosion pitting and fatigue failure. The study focuses initially...
Abstract
View Papertitled, Corrosion-<span class="search-highlight">Fatigue</span> in Steam Turbine Blades
View
PDF
for content titled, Corrosion-<span class="search-highlight">Fatigue</span> in Steam Turbine Blades
A research program has been initiated to develop the first predictive methodology for corrosion fatigue life in steam turbine blades, addressing a critical gap in current understanding despite extensive research into corrosion pitting and fatigue failure. The study focuses initially on dual-certified 403/410 12% Cr stainless steel, utilizing a newly developed test facility capable of conducting high-cycle fatigue tests in simulated steam environments at 90°C with controlled corrosive conditions. This testing platform enables the investigation of various steady and cyclic stress conditions, establishing a foundation for future testing of other blade steels and the development of comprehensive blade life estimation techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1351-1360, October 21–24, 2019,
... that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic...
Abstract
View Papertitled, Low Cycle <span class="search-highlight">Fatigue</span> Properties and Impact Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
View
PDF
for content titled, Low Cycle <span class="search-highlight">Fatigue</span> Properties and Impact Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness at temperatures ranging from -196…100°C of advanced 10% Cr martensitic steel with high B and low N contents. The effect of new alloying scheme and corresponding peculiarities of M 23 C 6 carbides on the low cycle fatigue resistance and impact toughness of the 10%Cr martensitic steel is analyzed. It is revealed that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic steels.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 919-929, October 25–28, 2004,
... such as cobalt, tungsten, and boron to meet a range of requirements, including extending fatigue life. The steel is designed to have the same creep strength as T/P92 but with better oxidation resistance due to the higher chromium content. It has about a 0.2% increase in mechanical properties compared to T/P92...
Abstract
View Papertitled, VM12 - A New 12%Cr Steel for Boiler Tubes, Headers and Steam Pipes in Ultra Supercritical Power Plants
View
PDF
for content titled, VM12 - A New 12%Cr Steel for Boiler Tubes, Headers and Steam Pipes in Ultra Supercritical Power Plants
A new 12%Cr steel, VM12, has been developed with the combined strength and oxidation resistance characteristics desired for high-temperature applications. The steel increases chromium content by around 0.2% to improve oxidation properties while alloying with other elements such as cobalt, tungsten, and boron to meet a range of requirements, including extending fatigue life. The steel is designed to have the same creep strength as T/P92 but with better oxidation resistance due to the higher chromium content. It has about a 0.2% increase in mechanical properties compared to T/P92 steel. Results are presented for tubes and pipes cast with a variety of surface conditions. In addition, detailed results are provided on the effects of alloying elements on creep and oxidation resistance.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 679-689, October 22–25, 2013,
... for alternative approaches are made. KEYWORDS Grade 91 steel, creep-fatigue, life fraction rule, modelling. INTRODUCTION The modified 9Cr 1Mo steel (grade 91) is widely used as structural material at elevated temperatures in applications of energy industry, such as fossil fired power plants. The grade 91 steel...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> Properties of Grade 91 Steel
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> Properties of Grade 91 Steel
The creep-fatigue properties of modified 9Cr-1Mo (grade 91) steel have been investigated for the purpose of design in cyclic service. In this paper test results from creep-fatigue (CF) and low cycle fatigue (LCF) on grade 91 steel are reported. The tests performed on the high precision pneumatic loading system (HIPS) are in the temperature range of 550-600ºC, total strain range of 0.7-0.9% and with hold periods in both tension and compression. Curves of cyclic softening and stress relaxation are presented. The CF test results and results obtained from literature are also analysed using methods described in the assessment and design codes of RCC-MRx, R5 and ASME NH as well as by the recently developed Φ-model. It is shown that the number of cycles to failure for CF data can be accurately predicted by the simple Φ-model. The practicality in using the life fraction rule for presenting the combined damage is discussed and recommendations for alternative approaches are made.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 180-189, October 22–25, 2013,
... and fatigue life. The fatigue life is determined as the number of cycles corresponding to a 5 % load drop. The fatigue life of Alloy 617 is found to be slightly lower compared to the fatigue life of Alloy 263. Tests with hold times of 10 min in tension and pressure (Figure 4), respectively, show shorter...
Abstract
View Papertitled, Creep Crack Growth Behavior as a Superalloy Selection Consideration for A-USC Power Plant Applications
View
PDF
for content titled, Creep Crack Growth Behavior as a Superalloy Selection Consideration for A-USC Power Plant Applications
To improve efficiency and flexibility and reduce CO 2 emissions, advanced ultra super critical (AUSC) power plants are under development, worldwide. Material development and its selection are critical to the success of these efforts. In several research and development programs / projects the selection of materials is based on stress rupture, oxidation and corrosion tests. Without doubt, these criteria are important. To improve the operational flexibility of modern power plants the fatigue properties are of increased importance. Furthermore, for a safe operation and integrity issues the knowledge about the crack behavior is essential. Crack initiation and crack growth may be caused by natural flaws or cracks induced by component operation. In order to develop new materials, properties like tensile strength and creep strength are an important part of qualification and subsequent approval by notified bodies. Consequently short term properties as well as time-temperature dependent properties are generated and taken into considerations. In the case of high strength γ'-strengthening nickel-base alloys investigating the creep crack behavior is also strongly recommended. This article shows results of currently investigated nickel-based alloys for newly developed headers, pipes and other high temperature boiler applications and their critical creep crack propagation behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
... amplitude from the stress amplitude at half life. Load-controlled fatigue tests with a nominal stress rate of 500MPa/s were also performed to determine fatigue limit of the material. RESULTS AND DISCUSSION Tensile Properties Figure 3 shows stress-strain curves of Alloy 740H at five strain rates at 700°C...
Abstract
View Papertitled, Evaluation of High Temperature Strength of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
View
PDF
for content titled, Evaluation of High Temperature Strength of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1-10, October 21–24, 2019,
... Microstructural evolution in thermo-mechanical fatigue loading: Reactive vs. passive microstructure Figure 1a displays a schematic comparison of typical thermo-mechanical fatigue life curves of ferritic-martensitic steel and ferritic HiperFer steel (100 % out-of-phase). To take into account the difference...
Abstract
View Papertitled, “Reactive” Microstructure—The Key to Cost-Effective, <span class="search-highlight">Fatigue</span>-Resistant High-Temperature Structural Materials
View
PDF
for content titled, “Reactive” Microstructure—The Key to Cost-Effective, <span class="search-highlight">Fatigue</span>-Resistant High-Temperature Structural Materials
Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure of conventional and novel steels were investigated in thermo-mechanical fatigue and fatigue crack propagation experiments. Based on the results, improved, ferritic “HiperFer” (High performance Ferrite) steels were designed, produced and characterized. A brief description of the current state of development is given.
Proceedings Papers
The Fracture Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 930-949, October 25–28, 2004,
... on fractured specimens. Due to its higher yield strength, P122 exhibited the best continuous LCF life. However, creep-fatigue interaction (CFI) in the weld heat-affected zone (HAZ) of P122 and P23 steels significantly reduced their lifespans compared to continuous LCF tests. This reduction is attributed...
Abstract
View Papertitled, The Fracture Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
View
PDF
for content titled, The Fracture Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
This paper reports on a study that investigated how low cycle fatigue (LCF) and fatigue crack propagation (FCG) properties of P92, P122, and P23 steels vary between 600°C and 700°C depending on the location relative to a cross weld. Microstructure analysis was also performed on fractured specimens. Due to its higher yield strength, P122 exhibited the best continuous LCF life. However, creep-fatigue interaction (CFI) in the weld heat-affected zone (HAZ) of P122 and P23 steels significantly reduced their lifespans compared to continuous LCF tests. This reduction is attributed to the effect of weld thermal cycles on fine precipitates. FCG tests revealed that the base metal consistently outperformed the HAZ in all tested steels and temperatures. P92 and P122 showed similar FCG rates except for P92's behavior at 600°C, which resembled P23. In both steels, the HAZ exhibited faster FCG rates at 600°C and 700°C compared to the base metal, particularly at lower stress intensity factor ranges (ΔK). Within the HAZ, the region 1 mm from the fusion line displayed the slowest FCG rates, followed by the base metal, while the fusion line and the region 2 mm from it showed the fastest. Fracture surfaces near the fusion line displayed cleavage-like features, while the region 1 mm away exhibited features associated with higher crack growth resistance.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 762-782, October 3–5, 2007,
... failure life, and their results were compared with experimental data. Among them, a newly proposed energy-based approach provided the most accurate failure life estimations, independent of material type and temperature. creep fatigue creep-fatigue test failure life test high-chromium steel...
Abstract
View Papertitled, Failure Behavior of High Chromium Steel Welded Joints Under Creep and Creep-<span class="search-highlight">Fatigue</span> Conditions
View
PDF
for content titled, Failure Behavior of High Chromium Steel Welded Joints Under Creep and Creep-<span class="search-highlight">Fatigue</span> Conditions
The strength of welded joints in high-chromium steels is a critical concern for operators of ultra-supercritical thermal power plants. To investigate this, a series of creep-fatigue tests with tensile strain holds were conducted on welded joints of two widely used high-chromium steels: Grade 91 and Grade 122. The tests revealed that failure consistently occurred in the fine-grain heat-affected zone, even at relatively low temperatures and short durations, whereas in simple creep tests, failure occurred in the plain base metal region. Four different procedures were used to predict failure life, and their results were compared with experimental data. Among them, a newly proposed energy-based approach provided the most accurate failure life estimations, independent of material type and temperature.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 584-602, August 31–September 3, 2010,
... to develop a comprehensive database on the creep-fatigue behavior of Grade 92 steel's base metal and welded joints and to establish a suitable life estimation procedure. Key findings include: (i) a thick pipe with submerged arc welding (SAW) was manufactured for testing; (ii) base metal and cross-weld...
Abstract
View Papertitled, Creep and Creep-<span class="search-highlight">Fatigue</span> Behavior of Grade 92 Base Metal and Welded Joints
View
PDF
for content titled, Creep and Creep-<span class="search-highlight">Fatigue</span> Behavior of Grade 92 Base Metal and Welded Joints
Grade 92 steel, a creep strength-enhanced ferritic (CSEF) steel, is used in supercritical steam fossil power plants for boilers and piping systems. While its creep strength is crucial, understanding the interaction between creep and fatigue damage is also vital for assessing component integrity under cyclic loading. Despite existing studies on its creep-fatigue behavior, additional data under creep-dominant conditions relevant to plant evaluations are needed. Girth welds, critical to piping system integrity, are particularly important in this context. EPRI and CRIEPI initiated a project to develop a comprehensive database on the creep-fatigue behavior of Grade 92 steel's base metal and welded joints and to establish a suitable life estimation procedure. Key findings include: (i) a thick pipe with submerged arc welding (SAW) was manufactured for testing; (ii) base metal and cross-weld specimens showed similar behavior under short-term creep and cyclic loading; (iii) these specimens had lower creep strengths than average literature values for this steel class in the short time regime, with differences decreasing as stress decreased; and (iv) the fatigue and creep-fatigue behavior of these specimens were similar to those of Grade 91 and 122 steels, with common characteristics in creep-fatigue failure prediction models across the three CSEF steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 580-591, October 21–24, 2019,
... dwell time of 1 or 6 h at 760°C on the Haynes 282 sand casting. As shown in Fig. 4, except for the test at 0.75% total strain range, the cast material did not exhibit a negative effect of tensile dwell time on fatigue life. This is in contrast with results from solid-solution strengthening Nibased...
Abstract
View Papertitled, Characterization of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, Characterization of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
The harsh operating conditions of Advanced Ultra-Supercritical (A-USC) power plants, i.e., steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi), require the use of Ni-based alloys with high temperature performance. Currently, the U.S. Department of Energy Fossil Energy program together with Electric Power Research Institute (EPRI) and Energy Industries of Ohio (EIO) is pursuing a Component Test (Comets) project to address material- and manufacturing-related issues for A-USC applications. Oak Ridge National Laboratory (ORNL) is supporting this project in the areas of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness, tensile, air and environmental creep, low cycle fatigue, creep-fatigue, environmental high cycle fatigue, and supporting microstructural characterization.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 667-678, October 22–25, 2013,
... Abstract Creep rupture strength is the principal material property prioritized in designing power generation plants against the steady-state stress due to internal pressure. Increasingly plants must cycle so there is a possibility of life reduction due to creep-fatigue interaction. Grade 92...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> Interaction in Grade 92 Steel and Its Predictability
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> Interaction in Grade 92 Steel and Its Predictability
Creep rupture strength is the principal material property prioritized in designing power generation plants against the steady-state stress due to internal pressure. Increasingly plants must cycle so there is a possibility of life reduction due to creep-fatigue interaction. Grade 92 steel is one of the creep strength enhanced ferritic (CSEF) steels which has superior creep strength compared to other CSEFs. It is expected to be widely used in coal-fired ultra-super critical plants as well as in LNG-fired combined cycle plants. However, at present there is insufficient information regarding the creep-fatigue behavior of this material. A joint study has been conducted to understand the behavior of this steel under creep-fatigue condition and see how accurate the failure life can be estimated. Three kinds of base materials as well as two kinds of welded joints have been tested under strain-controlled cyclic loading with or without hold times as well as under constant load creep condition. Continued decrease in the number of cycles to failure was observed with the extension of hold time in all the base metals and cross-weld specimens. It was found that the modified ductility exhaustion approach based on inelastic strain, as well as its extension employing the inelastic strain energy density, made reasonably accurate predictions of failure lives under a wide range of test conditions. Temperature- and rate-dependencies of fracture limits in terms of inelastic strain and energy density were able to be uniquely expressed using simple thermal activation energy parameters.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
... Abstract In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue...
Abstract
View Papertitled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
View
PDF
for content titled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
1