Skip Nav Destination
Close Modal
Search Results for
fatigue characteristics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 95
Search Results for fatigue characteristics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
... fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all...
Abstract
View Papertitled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
View
PDF
for content titled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials...
Abstract
View Papertitled, Nickel Alloys for High Efficiency Fossil Power Plants
View
PDF
for content titled, Nickel Alloys for High Efficiency Fossil Power Plants
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 487-503, August 31–September 3, 2010,
... (September 1996). 24. N. Taylor, P. Bontempi, C. Maciga and M. Livraghi, "Creep and fatigue characteristics of advanced 9Cr steel base and welds", Proc. COST Conf. on Materials for Advanced Power Engineering, Liège (October 1994), Part 1, p. 341-350. 25. C. Rees, E. Metcalfe and R.P. Skelton, "Materials...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> in Steam Turbine Materials
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> in Steam Turbine Materials
The creep-fatigue properties of steam turbine materials such as the 1%CrMoV steel traditionally adopted for steam inlet temperatures up to ~565°C, the newer advanced 9-11%Cr steels for applications up to ~600°C, and the nickel based Alloy 617 for potential use to >700°C are reviewed, in particular with reference to their cyclic/hold test crack initiation endurances. The results of cyclic/hold creep-fatigue tests are commonly employed to establish the damage summation diagrams used to form the basis of a number of creep-fatigue assessment procedures, and it is demonstrated that care should be exercised in the way such diagrams are interpreted to compare the creep-fatigue resistances of different alloy types. The form of such damage diagrams is dependent, not only on the analytical procedures used to define the respective fatigue and creep damage fractions, but also on both the deformation and damage interaction mechanisms displayed by the material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... of Mechanical Science and Technology, Vos. 33, pp. 1-10, 2019. Jaegu Choi, Sunguk Wee, Jae-Mean Koo, Eui-Suck Chung, Suk-Hwan Kwon and Chang-Sung Seok, " Thermomechanical fatigue characteristics of CMSX-4 applied to the high-pressure turbine first-stage single-crystal rotor blade," Journal of Mechanical Science...
Abstract
View Papertitled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
View
PDF
for content titled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 616-626, October 3–5, 2007,
... that the thermal deformation of specimen t. in cyclic temperature variation conditions was transformed into mechanical deformation m. The fatigue tests executed on 4 test specimens and at the aforementioned assumed parameters enabled to determine the fatigue characteristics of the tested T-connection material...
Abstract
View Papertitled, The Estimation of Residual Life of Low-Alloy Cast Steel Cr-Mo-V Type after Long-Term Creep Service
View
PDF
for content titled, The Estimation of Residual Life of Low-Alloy Cast Steel Cr-Mo-V Type after Long-Term Creep Service
This study examined a three-way steam pipe made from low-alloy cast Cr-Mo-V steel after more than 100,000 hours of creep service. The investigation compared the microstructure and mechanical properties at both room and elevated temperatures to the material's initial state, including impact transition temperatures. The research utilized shortened creep tests under various conditions of stress and temperature, along with extensive investigations of both low-alloy Cr-Mo-V and high-alloyed 12Cr-Mo-V steels, to develop methods for estimating service life and residual life in practical applications. The findings enabled the development of parameter selection methods for long-term creep tests and helped determine the residual life of the low-alloy Cr-Mo-V cast steel. Additional low-cycle isothermal and thermal fatigue tests were conducted to assess the overall degree of material property degradation, with results being applicable to the diagnostics of pressure installations in power stations.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 584-602, August 31–September 3, 2010,
... of these specimens were similar to those of Grade 91 and 122 steels, with common characteristics in creep-fatigue failure prediction models across the three CSEF steels. boilers creep damage creep strength-enhanced ferritic steel creep-fatigue behavior fatigue damage piping systems supercritical steam...
Abstract
View Papertitled, Creep and Creep-<span class="search-highlight">Fatigue</span> Behavior of Grade 92 Base Metal and Welded Joints
View
PDF
for content titled, Creep and Creep-<span class="search-highlight">Fatigue</span> Behavior of Grade 92 Base Metal and Welded Joints
Grade 92 steel, a creep strength-enhanced ferritic (CSEF) steel, is used in supercritical steam fossil power plants for boilers and piping systems. While its creep strength is crucial, understanding the interaction between creep and fatigue damage is also vital for assessing component integrity under cyclic loading. Despite existing studies on its creep-fatigue behavior, additional data under creep-dominant conditions relevant to plant evaluations are needed. Girth welds, critical to piping system integrity, are particularly important in this context. EPRI and CRIEPI initiated a project to develop a comprehensive database on the creep-fatigue behavior of Grade 92 steel's base metal and welded joints and to establish a suitable life estimation procedure. Key findings include: (i) a thick pipe with submerged arc welding (SAW) was manufactured for testing; (ii) base metal and cross-weld specimens showed similar behavior under short-term creep and cyclic loading; (iii) these specimens had lower creep strengths than average literature values for this steel class in the short time regime, with differences decreasing as stress decreased; and (iv) the fatigue and creep-fatigue behavior of these specimens were similar to those of Grade 91 and 122 steels, with common characteristics in creep-fatigue failure prediction models across the three CSEF steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction...
Abstract
View Papertitled, Material and Design Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and Design Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
... for assessment of these materials in 2009 and a series of works has been continued for a decade. With a common interest in characteristics of failures at high temperatures, the studies have been covering the effects of load variation (creep-fatigue) and stress multiaxiality as well as the behavior under uniaxial...
Abstract
View Papertitled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
View
PDF
for content titled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 107-118, October 3–5, 2007,
... temperature strength capabilities beyond those of 740 alloy, which has previously been touted as having the highest strength capabilities. In addition to its creep strength, its fatigue resistance, oxidation resistance, and excellent fabrication characteristics make it a very attractive candidate. Therefore...
Abstract
View Papertitled, Materials Solutions for Advanced Steam Power Plants
View
PDF
for content titled, Materials Solutions for Advanced Steam Power Plants
Significant research efforts are underway in Europe, Japan, and the U.S. to develop the technology to increase the steam temperature in fossil power plants in order to achieve greater efficiency and reduce the amount of greenhouse gases emitted. The realization of these advanced steam power plants will require the use of nickel-based superalloys having the required combination of high-temperature creep strength, oxidation resistance, thermal fatigue resistance, thermal stability, and fabricability. Haynes 230 and 282 alloys are two materials that meet all of these criteria. The metallurgical characteristics of each alloy are described in detail, and the relevant high-temperature properties are presented and discussed in terms of potential use in advanced steam power plants.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 919-929, October 25–28, 2004,
... Abstract A new 12%Cr steel, VM12, has been developed with the combined strength and oxidation resistance characteristics desired for high-temperature applications. The steel increases chromium content by around 0.2% to improve oxidation properties while alloying with other elements...
Abstract
View Papertitled, VM12 - A New 12%Cr Steel for Boiler Tubes, Headers and Steam Pipes in Ultra Supercritical Power Plants
View
PDF
for content titled, VM12 - A New 12%Cr Steel for Boiler Tubes, Headers and Steam Pipes in Ultra Supercritical Power Plants
A new 12%Cr steel, VM12, has been developed with the combined strength and oxidation resistance characteristics desired for high-temperature applications. The steel increases chromium content by around 0.2% to improve oxidation properties while alloying with other elements such as cobalt, tungsten, and boron to meet a range of requirements, including extending fatigue life. The steel is designed to have the same creep strength as T/P92 but with better oxidation resistance due to the higher chromium content. It has about a 0.2% increase in mechanical properties compared to T/P92 steel. Results are presented for tubes and pipes cast with a variety of surface conditions. In addition, detailed results are provided on the effects of alloying elements on creep and oxidation resistance.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
... evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants. chromium-nickel-tungsten alloys creep rupture strength creep test Laves...
Abstract
View Papertitled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
View
PDF
for content titled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
The development of materials technologies for piping and tubing in advanced ultrasupercritical (A-USC) power plants operating at steam temperatures above 700°C represents a critical engineering challenge. The 23Cr-45Ni-7W alloy (HR6W), originally developed in Japan as a high-strength tubing material for 650°C ultra-supercritical (USC) boilers, was systematically investigated to evaluate its potential for A-USC plant applications. Comparative research with γ-strengthened Alloy 617 revealed that the tungsten content is intimately correlated with Laves phase precipitation and plays a crucial role in controlling creep strength. Extensive creep rupture tests conducted at temperatures between 650-800°C for up to 60,000 hours demonstrated the alloy's long-term stability, with 105-hour extrapolated creep rupture strengths estimated at 88 MPa at 700°C and 64 MPa at 750°C. Microstructural observations after creep tests and aging confirmed the material's microstructural stability, which is closely linked to long-term creep strength and toughness. While Alloy 617 exhibited higher creep rupture strength at 700 and 750°C, the materials showed comparable performance at 800°C. Thermodynamic calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, February 25–28, 2025,
... Abstract The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized...
Abstract
View Papertitled, Material Synthesis and Advanced Manufacturing Without Melting: Advantages of Bulk, High-Shear Processing
View
PDF
for content titled, Material Synthesis and Advanced Manufacturing Without Melting: Advantages of Bulk, High-Shear Processing
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 667-678, October 22–25, 2013,
..., M., Creep-fatigue characteristics of advanced high strength Cr-W steels for power boiler applications, presented at Conference on advanced heat resistant steels for power generation, 1998. [5] Yamauchi, M., Study on creep-fatigue evaluation methods for high-temperature component, Kumamoto...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> Interaction in Grade 92 Steel and Its Predictability
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> Interaction in Grade 92 Steel and Its Predictability
Creep rupture strength is the principal material property prioritized in designing power generation plants against the steady-state stress due to internal pressure. Increasingly plants must cycle so there is a possibility of life reduction due to creep-fatigue interaction. Grade 92 steel is one of the creep strength enhanced ferritic (CSEF) steels which has superior creep strength compared to other CSEFs. It is expected to be widely used in coal-fired ultra-super critical plants as well as in LNG-fired combined cycle plants. However, at present there is insufficient information regarding the creep-fatigue behavior of this material. A joint study has been conducted to understand the behavior of this steel under creep-fatigue condition and see how accurate the failure life can be estimated. Three kinds of base materials as well as two kinds of welded joints have been tested under strain-controlled cyclic loading with or without hold times as well as under constant load creep condition. Continued decrease in the number of cycles to failure was observed with the extension of hold time in all the base metals and cross-weld specimens. It was found that the modified ductility exhaustion approach based on inelastic strain, as well as its extension employing the inelastic strain energy density, made reasonably accurate predictions of failure lives under a wide range of test conditions. Temperature- and rate-dependencies of fracture limits in terms of inelastic strain and energy density were able to be uniquely expressed using simple thermal activation energy parameters.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 570-579, October 21–24, 2019,
... propagation. This is the reason for that the nascent crack was immediately initiated after the restart of the cyclic fatigue loading, and the fatigue crack propagation rate rapidly decreased, as described by characteristic (2). Also, after the crack passes through the region where the (ii) stress is relaxed...
Abstract
View Papertitled, A Unique Influence of Creep Deformation on the Subsequent <span class="search-highlight">Fatigue</span> Crack Propagation in a Single Crystal Ni-Base Superalloy
View
PDF
for content titled, A Unique Influence of Creep Deformation on the Subsequent <span class="search-highlight">Fatigue</span> Crack Propagation in a Single Crystal Ni-Base Superalloy
Single crystal Ni-base superalloys are subjected to tension hold at high temperature in addition to cyclic loading during the operation of gas turbines. Various studies have investigated creep-fatigue crack propagation in superalloys under trapezoidal loadings and evaluated the life time based on parameters such as creep J-integral. However, it is still unclear how damage field and stress-strain condition change at the crack tip during hold time, and how it affects on fatigue crack propagation. In this study, the influence of the tension hold and accompanying creep at crack tip on subsequent fatigue crack propagation behavior was evaluated by introducing single tension holds into pure cyclic loadings. The series of the experiments revealed that because of the tension hold, material degradation and stress relaxation occurred simultaneously ahead of crack tip. In the region where material was degraded, the resistance against crack propagation was reduced, while in the region where stress was relaxed, the crack driving force was lowered.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 733-747, October 3–5, 2007,
... are generated using a test specimen which includes representative stress and strain redistribution characteristics. From that data, cyclic design curves are generated analogous to the current design fatigue curves which do not include the effects of creep. An important point is that the data and resultant...
Abstract
View Papertitled, A Design Perspective of Elevated Temperature Material Behavior
View
PDF
for content titled, A Design Perspective of Elevated Temperature Material Behavior
This paper examines elevated-temperature materials behavior through two perspectives: that of component designers/stress analysts and developers of elevated-temperature design criteria. It explores challenges in design and structural integrity evaluation, focusing on how elevated temperature design criteria originally developed for nuclear components can be adapted for non-nuclear power and petrochemical applications, particularly those under cyclic loading conditions. A central challenge lies in extrapolating from limited specimen data—gathered under specific time periods, loading conditions, and geometries—to predict behavior in complex structures subjected to variable short-term and long-term loading patterns. The paper concludes by proposing a pathway for developing elevated-temperature design criteria specifically for power and petrochemical plant components operating cyclically in the creep regime.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1190-1205, October 22–25, 2013,
... Abstract Creep-fatigue crack formation (endurance) and crack growth rate data are necessary inputs for assessing the structural integrity and for estimating the design life of high temperature components in power generation and aircraft engine industries. Ensuring consistency in the reported...
Abstract
View Papertitled, Harmonizing of Creep-<span class="search-highlight">Fatigue</span> Test Methods through Development of ASTM Standards
View
PDF
for content titled, Harmonizing of Creep-<span class="search-highlight">Fatigue</span> Test Methods through Development of ASTM Standards
Creep-fatigue crack formation (endurance) and crack growth rate data are necessary inputs for assessing the structural integrity and for estimating the design life of high temperature components in power generation and aircraft engine industries. Ensuring consistency in the reported test data, as well as an understanding of the inherent scatter and its source in the data, are both necessary for assuring quality and limitations of the analyses that rely on the data. In 2008, the American Society for Testing and Materials (ASTM) under the umbrella of its subcommittees E08.05 on Cyclic Deformation and Crack Formation and E08.06 on Crack Growth, and the sponsorship of Electric Power Research Institute (EPRI) through its international experts’ working group on creep-fatigue embarked on the task of developing separate standard test methods for creep-fatigue crack formation and creep-fatigue crack growth. The first standard entitled, “E-2714-09: Standard Test Method for Creep-fatigue Testing” was developed in 2009 and was followed up with a round-robin consisting of 13 laboratories around the world for testing the newly developed standard. This paper discusses the results of this round-robin concluded in 2012 using the widely used P91 steel that led to the formulation of the Precision and Bias statement contained in the version of the ASTM standard E2714 that was successfully balloted in the year 2013.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 351-359, October 22–25, 2013,
... and Sheffield UK 1974: Paper 173/73 [6] Duo Wang. Fracture Mechanics [M]. Nanning Guangxi People Press, 1982 [7] Yokota O, Sugiura R, Yoda M ,et al. Crack Growth Characteristics and Damage in 12Cr Steel Under High Temperature Creep and Creep-fatigue Conditions [J]. Strength Fracture and Complexity, 2006, 4...
Abstract
View Papertitled, Creep and Creep-<span class="search-highlight">Fatigue</span> Crack Growth Behaviors of 30Cr1Mo1V Rotor Steel after Long Term Service
View
PDF
for content titled, Creep and Creep-<span class="search-highlight">Fatigue</span> Crack Growth Behaviors of 30Cr1Mo1V Rotor Steel after Long Term Service
This paper presents the creep and creep-fatigue crack growth behaviors of 30Cr1Mo1V turbine rotor steel which had been in service for 16 years. Two typical sections of the rotor, i.e. high and low temperature sections, are examined at 538°C, with crack initiation and propagation monitored by D.C. potential drop method in a compact tension (CT) specimen. The material of the high temperature section has the lower resistance to creep and creep-fatigue crack growths than the low temperature section. The creep crack initiation (CCI) time decreases with the increase of initial stress intensity factor. The creep-fatigue crack growth (CFCG) is dominated by the cycle-dependent fatigue process when the hold time at the maximum load is shorter, but it becomes dominated by the time-dependent creep process when the hold time becomes longer. The high temperature section shows a larger influence of time-dependent creep behavior on CFCG than the low temperature section.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1207-1215, February 25–28, 2025,
... 663 6.5 3 0.01 442.7 -536.9 167.2 550 28.2 30 0.01 468.0 -540.6 229.7 213 106.8 Figure 2a shows the peak and valley stress curves of creep-fatigue interaction tests with different hold times. 617 alloy exhibits cyclic hardening characteristics. As the number of cycle increases, the peak/valley stress...
Abstract
View Papertitled, Creep-<span class="search-highlight">Fatigue</span> Interaction Life and Prediction Model Based on Stress Relaxation Ratio of Nickel-Based Superalloy 617
View
PDF
for content titled, Creep-<span class="search-highlight">Fatigue</span> Interaction Life and Prediction Model Based on Stress Relaxation Ratio of Nickel-Based Superalloy 617
Creep-fatigue tests strain-controlled with different strain amplitudes and different hold times at 725 were done on nickel-based alloy 617 as a typical candidate material for turbine rotor of advanced ultra-supercritical power plant. Stress relaxes during the hold time when the strain remains at the tensile peak. The analysis of the stress relaxation during different strain hold times shows that the ratio of the relaxation stress and the maximum stresses has strong correlation with strain amplitude and hold time. The failure life also has a certain dependence on the relaxation stress ratio. The failure life decreases and the relaxation stress ratio increases as the strain amplitude increases. The failure life decreases and the relaxation stress ratio increases as the hold time increases. Therefore the stress relaxation ratio was used as an intermediate variable to obtain the corresponding relationship model by establishing the relationship between the relaxation stress ratio and the strain and the relationship between the relaxation stress ratio and the failure life. This model can be used to predict the creep-fatigue interaction life more simply and directly.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
... transgranular at the edges of the holes on the inner surface, propagate also mainly transgranular into the base material (Fig. 6 and 7). The multiple cracks found are characteristic for (thermal)-fatigue damage. The intergranular contribution to crack growth was very low in both material regions. In the area...
Abstract
View Papertitled, Design, Operation, Numerical Simulation and Damage Assessment of a Header in the HWT Test Loop
View
PDF
for content titled, Design, Operation, Numerical Simulation and Damage Assessment of a Header in the HWT Test Loop
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 783-789, October 3–5, 2007,
... to the centrifugal force [1,2]. Nowadays, several investigations have indicated that the directional coarsening could occur by many types of loading conditions: monotonic loading associated with plastic strain [3,4] and the high temperature fatigue or thermo-mechanical fatigue loadings [5]. A series of relating...
Abstract
View Papertitled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
View
PDF
for content titled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
The morphology of γ/γ' microstructures in single crystal superalloys is known to evolve during service conditions according to established materials science principles, potentially offering a novel approach for failure analysis. This study investigated the morphological changes in γ/γ' microstructures of CMSX-4, a single crystal Ni-base superalloy, under various loading conditions. The experimental parameters included tensile and compressive stress levels, loading temperature, loading rate, monotonic versus cyclic loading, and multi-axial stress states. Results demonstrated that the γ/γ' microstructures exhibited highly sensitive responses to these loading conditions. A newly developed quantitative image analysis method was used to characterize these morphological changes, and the findings were compiled into a two-dimensional map to facilitate failure analysis and other engineering applications.
1