Skip Nav Destination
Close Modal
Search Results for
failure analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 274
Search Results for failure analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 750-761, October 21–24, 2019,
... of the part for continued service can be determined. The failure analysis section of the paper briefly discusses failures of two expander wheels and an expander disc made out of A286 to pinpoint some of the salient features of damage accumulation and fracture during service. failure analysis forging...
Abstract
View Papertitled, A286 Applications in Turbo Machineries—Experiences in Fabrication, In-Service Evaluation, and <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span>
View
PDF
for content titled, A286 Applications in Turbo Machineries—Experiences in Fabrication, In-Service Evaluation, and <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span>
The A286 is one of the earliest superalloys developed. It has been used for manufacturing different components of turbo machineries because of its balanced high temperature properties. These components include shafts, discs, spacers, blades and fasteners. This paper reviews some of the issues and recent field experiences related to metallurgy, fabrication, in-service evaluation and failure of some of these components. The fabrication aspects including the effects of alloy melting processes, forging parameters and different types of heat treatments on the processed parts are discussed. The importance of these factors on the microstructure and properties of A286 are highlighted. The effects of service exposure on some of these parts are also discussed. In service evaluation involves checking for service induced damage or changes in microstructures and properties so that the suitability of the part for continued service can be determined. The failure analysis section of the paper briefly discusses failures of two expander wheels and an expander disc made out of A286 to pinpoint some of the salient features of damage accumulation and fracture during service.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 347-355, October 11–14, 2016,
... steel with the extension of service time, sigma precipitates form at grain boundaries by continuous chain. Sigma precipitates are hard and brittle, weaken grain boundaries and cause microscopic damage, eventually lead to boiler tubes failure. austenitic stainless steel creep failure analysis...
Abstract
View Papertitled, Creep <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span> of Superheater Tubes in a Supercritical Boiler
View
PDF
for content titled, Creep <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span> of Superheater Tubes in a Supercritical Boiler
Up to now, the amount of supercritical boilers in China has ranked number one in the world. Many supercritical boilers have run for more than 100,000 hours. Creep becomes one of the main reasons for supercritical boiler tubes failure. In this article, the failure of superheater tubes in a supercritical boiler was analyzed, the microstructural evolution of austenitic stainless steel tubes were studied, a full investigation into the failure cause was carried out involving in visual examination, optical microscope, SEM, TEM and XRD. The results show, sigma phase precipitates in this austenitic steel with the extension of service time, sigma precipitates form at grain boundaries by continuous chain. Sigma precipitates are hard and brittle, weaken grain boundaries and cause microscopic damage, eventually lead to boiler tubes failure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 712-722, February 25–28, 2025,
... stainless steel guide conduit adjacent to a fillet weld at the upper surface of a TP304 seal table. The cracking resulted in reactor coolant leakage that was detected by the presence of boric acid deposits on the exterior of the conduit and table. Failure analysis including dimensional measurements...
Abstract
View Papertitled, Damage Mechanisms - <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span> of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
View
PDF
for content titled, Damage Mechanisms - <span class="search-highlight">Failure</span> <span class="search-highlight">Analysis</span> of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
The incore instrumentation system of a pressurized water reactor (PWR) facilitates neutron flux mapping and temperature measurements at specific core locations. A guide conduit, extending from the seal table to the lower reactor pressure vessel head, guides and protects each incore guide thimble between the table and the lower reactor vessel head. Each flux thimble houses a detector and drive cable. Once filled with reactor coolant, the conduit becomes an extension of the reactor coolant pressure boundary. This paper reports the examination results of cracking detected in a TP304 stainless steel guide conduit adjacent to a fillet weld at the upper surface of a TP304 seal table. The cracking resulted in reactor coolant leakage that was detected by the presence of boric acid deposits on the exterior of the conduit and table. Failure analysis including dimensional measurements, chemical analysis, stereomicroscopy, metallography, and scanning electron microscopy showed that extensive cracking of the conduit and seal table material occurred due to stress corrosion cracking (SCC). Assessment showed that chlorine-containing deposits were present on the exterior of the conduit and on the surfaces of the seal table and were due to the design and operation of HVAC systems at the coastal plant. Stainless steels are susceptible to SCC in environments with elevated temperatures, chloride contents, and increased tensile stress – particularly in non-post weld heat treated (PWHT) weld regions and the heat affected zone (HAZ). This was the apparent primary cause of the failure. However, chloride-induced SCC of such materials typically results in transgranular crack propagation, whereas the observed cracks were indicative of intergranular stress corrosion cracking (IGSCC). Microstructural analysis showed that the observed cracks initiated in sensitized areas of material adjacent to the weld. Sensitization of the material caused chromium depletion from adjacent areas and increased susceptibility of the depleted areas to IGSCC. In this case, the most probable source of sensitization was related to welding and the long-term growth of grain boundary carbides nucleated during welding. This was considered a contributing cause to the failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 715-725, October 21–24, 2019,
... Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31399/asm.cp.am-epri-2019p0715 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org ROOT CAUSE ANALYSIS OF BOILER FINAL SUPERHEATER BENDING TUBE FAILURE C. W. Tzeng C. S. Kao* T...
Abstract
View Papertitled, Root Cause <span class="search-highlight">Analysis</span> of Boiler Final Superheater Bending Tube <span class="search-highlight">Failure</span>
View
PDF
for content titled, Root Cause <span class="search-highlight">Analysis</span> of Boiler Final Superheater Bending Tube <span class="search-highlight">Failure</span>
The broken elbow of the final superheater tube (ASME SA213 TP304H) from a coal-fired power plant was evaluated. The root causes were identified by metallographic observation, sensitization evaluation, hardness measurement, and EBSD analysis. The analysis results reached the following conclusions. (1) The tube bending was not performed in accordance with ASME Code requirements—a solid-solution heat treatment was not performed after cold working. (2) The hardness at the elbow is greater than 260 HV, exceeding the ASME code limit. (3) The sensitization was 19%, showing a performance degradation. (4) There are no obvious corrosion elements in the oxide layers of the cracks. (5) Metallographic microstructure analysis shows that there are many intergranular cracks and carbides such as Cr-rich phase and Fe-Cr are precipitated at the grain boundaries, ultimately resulting in strain-induced precipitation hardening damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 614-620, October 21–24, 2019,
..., Ibaraki, 305-0047, Japan. 3Department of Nanoscience and Nanoengineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, 169-8555, Japan 3Center of Failure Analysis, Institute of Materials Science, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. ABSTRACT...
Abstract
View Papertitled, Development of Pt-Ir Diffusion Coatings on Ni-Based Single Crystal Superalloys for Oxidation Protection
View
PDF
for content titled, Development of Pt-Ir Diffusion Coatings on Ni-Based Single Crystal Superalloys for Oxidation Protection
A paste, which contains Pt or Pt-xIr (x = 0-30 at%) alloy nano-powder was sprayed on some Ni-based single crystal superalloys. Then the annealing diffusion treatment at 1100 °C for 1 h in flowing Ar atmosphere was conducted to develop Pt and Pt-Ir diffusion coatings. Cyclic oxidation tests were carried out at 1150 °C in still air in order to investigate the thermal stability and oxidation behavior of the coatings and they were compared with electroplated diffusion coatings. It was found that Ir can retard the formation of voids in both the coatings and substrates. In addition, by replacing the electroplating method to the paste coating method, the crack problem due to the brittle feature of electroplated Pt-Ir coatings could be solved. Therefore, the Pt-Ir diffusion coating prepared by the paste- coating method is promising as the bond-coat material due to suppression of voids, cracks and stable Al 2 O 3 on the surface. The Pt-Ir paste diffusion coatings introduced above have several further advantages: they are easy to recoat, cause less damage to substrates, and offer comparable oxidation resistance. Thus, the method can be applicable to the remanufacturing of blades, which may extend the life of components. The future aspect of the paste coating will also be discussed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 783-789, October 3–5, 2007,
... Abstract The morphology of γ/γ' microstructures in single crystal superalloys is known to evolve during service conditions according to established materials science principles, potentially offering a novel approach for failure analysis. This study investigated the morphological changes in γ/γ...
Abstract
View Papertitled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
View
PDF
for content titled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
The morphology of γ/γ' microstructures in single crystal superalloys is known to evolve during service conditions according to established materials science principles, potentially offering a novel approach for failure analysis. This study investigated the morphological changes in γ/γ' microstructures of CMSX-4, a single crystal Ni-base superalloy, under various loading conditions. The experimental parameters included tensile and compressive stress levels, loading temperature, loading rate, monotonic versus cyclic loading, and multi-axial stress states. Results demonstrated that the γ/γ' microstructures exhibited highly sensitive responses to these loading conditions. A newly developed quantitative image analysis method was used to characterize these morphological changes, and the findings were compiled into a two-dimensional map to facilitate failure analysis and other engineering applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... analysis [18]. Recently both of High Pressure Combined Steam Valves (HPCSV) were all jammed during the cold start of steam turbine in an ultra supercritical power plant. This work deals with failure analysis on jam fault of valves utilizing the technology supervision system, and probable reasons in design...
Abstract
View Papertitled, <span class="search-highlight">Analysis</span> of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
View
PDF
for content titled, <span class="search-highlight">Analysis</span> of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1182-1189, October 22–25, 2013,
.... Material database module in charge of manages and maintains chemical composition, mechanics, and physical properties of commonly used metal materials of components. This module provides basic referential criterion for testing and assessment staff [1]. 3.2 Failure Analysis Failure analysis module...
Abstract
View Papertitled, Development of Boiler Risk Management and Life Prediction System
View
PDF
for content titled, Development of Boiler Risk Management and Life Prediction System
Addressing the growing concern of supercritical and ultra-supercritical boilers as potential safety hazards in power plants, a new Boiler Risk Management and Life Prediction System (BRMLPS) has been developed. This system leverages risk-based inspection and assessment techniques alongside life prediction and management methods. The BRMLPS focuses on evaluating and ranking the risk associated with critical boiler components, such as heating surfaces, headers, and drums. This risk assessment allows for the development of targeted and efficient inspection plans and repair strategies, ultimately aiming to minimize accident rates, reduce potential losses, and optimize safety investments. By implementing this system, power plants can achieve maintenance optimization, balancing safety and economic considerations for their specialized equipment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 723-734, February 25–28, 2025,
... analysis of furnace radiant tubes exposed to excessive temperature, Engineering Failure Analysis, Vol. 13, No. 6 (2006). httpsdoi.org/10.1016/j.engfailanal.2005.04.003. [5] Otegui, J. L., Bona, J. D., Fazzini, P. G., Effect of coking in massive failure of tubes in an ethylene cracking furnace...
Abstract
View Papertitled, Weldability Evaluation of Computationally Designed Filler Wires for Wire-Arc Additive Manufacturing of Functionally Graded Materials in Harsh Service Environments
View
PDF
for content titled, Weldability Evaluation of Computationally Designed Filler Wires for Wire-Arc Additive Manufacturing of Functionally Graded Materials in Harsh Service Environments
Olefin furnaces contain gravity cast U-bend fittings from Fe-Ni-Cr alloys that can experience premature failures due to a combination of harsh service conditions. The fittings undergo steep temperature variations during startup and shutdown, outer diameter (OD) oxidation from furnace flue gases, and inner diameter (ID) carburization from process fluids. As a result, cracking often occurs along large solidification grain boundaries from interconnected networks of carbides and secondary phases. To address these degradation concerns, Wire Arc Additive Manufacturing (WAAM) is being used to produce a functionally graded fitting that provides increased oxidation, carburization, creep, and thermal fatigue resistance. Three welding wire compositions have been designed based on thermodynamic and kinetic modeling techniques to address the appropriate corrosion resistance and mechanical properties needed in the OD, Core, and ID regions of the U- bend fitting cross-section. A Fe-35Cr-45Ni-0.7Nb solid welding wire is being used for the Core section, and metal-cored welding wires based around this composition with additions of Si or Al are being used for the OD and ID sections, respectively. This study involved weldability evaluation focused on understanding the microstructures and potential additive manufacturing printability challenges associated with graded WAAM structures using these welding wires. To achieve this, Cast Pin Tear Testing (CPTT) was performed to evaluate solidification cracking susceptibility of the welding wires. Additionally, Scheil calculations were performed in Thermo-Calc software to predict solidification microstructures. To validate the results, SEM characterization was conducted on cast buttons of each welding wire to identify phases in the respective microstructures. These unique data will help inform WAAM design parameters needed to produce a Functionally Graded Material (FGM) that improves the lifetime of Fe-Ni-Cr U-bend fittings in olefin furnaces.?
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... Abstract A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength...
Abstract
View Papertitled, Neutral Zone Crack and Window Opening <span class="search-highlight">Failure</span> in SA213 TP347H Bent Tube
View
PDF
for content titled, Neutral Zone Crack and Window Opening <span class="search-highlight">Failure</span> in SA213 TP347H Bent Tube
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 852-862, October 21–24, 2019,
... laser diode integrated in a robot. This article focuses on laser cladding NiCr-based coatings on steam valve seats in supercritical and USC steam turbine systems, including their crack failure analysis, on-site experience of repairing by laser cladding and performance analysis. The test methods...
Abstract
View Papertitled, Method of On-Site Repairing Steam Turbine Valve Seat with Laser Cladding
View
PDF
for content titled, Method of On-Site Repairing Steam Turbine Valve Seat with Laser Cladding
Steam turbine is one of the critical equipments in coal-fired power plants, steel P91 is a common material of its control valves. CoCr-based hardfacing on valve seats can resist long time exposure to water vapor with high temperature, thermal fatigue and solid particles erosion under high pressure. However, these hardfacing can crack and disbond during operation, which generates high risks for turbine systems and power plants. This article discussed the failure reasons of CoCr-based hardfacing, and introduced a method and practical experience of on-site repairing steam turbine valve seats with laser cladding NiCr coating.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 759-767, October 11–14, 2016,
... when creating the load spectrum. Text 1. Application for FEM at KSB Design Optimization Stress Analysis and Proof of Safety (incl. Seismic Qualification) for existing Design acc. relevant Codes as ASME, KTA, RCC-M, API, DIN, AD-Merkblatt Feasibility Study Failure Analysis Structural Safety...
Abstract
View Papertitled, Mechanical <span class="search-highlight">Analysis</span> of a Boiler Water Circulation Pump
View
PDF
for content titled, Mechanical <span class="search-highlight">Analysis</span> of a Boiler Water Circulation Pump
In previous investigations on life with flexible driving were highly stressed components predominantly in hot continuous pressurized part of power plants in the foreground. However cases of damage and subsequent studies on peripheral components such as the boiler circulation system (boiler circulating pump) showed that a potential failure as well as a high hazard potential respectively great consequential damage can occur when such components are operated under different conditions. To avoid damages and losses resulting from damage to peripheral components, these components have to be subjected to further analysis. Here especially the pump housing is in the focus.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 927-939, October 3–5, 2007,
... and cyclic loading in boiler headers and piping systems. The analysis deals with the effect of cyclic loading, constraint and multiaxiality in a heterogeneous joint. A common thread that runs through most high temperature weld reports and failure analyses is the existence of a relatively creep-weak zone...
Abstract
View Papertitled, Simplified Methods for High Temperature Weld Design and Assessment for Steady and Cyclic Loading
View
PDF
for content titled, Simplified Methods for High Temperature Weld Design and Assessment for Steady and Cyclic Loading
Simplified or reference stress techniques are described and demonstrated for high temperature weld design and life assessment. The objective is the determination of weld life under steady and cyclic loading in boiler headers and piping systems. The analysis deals with the effect of cyclic loading, constraint and multiaxiality in a heterogeneous joint. A common thread that runs through most high temperature weld reports and failure analyses is the existence of a relatively creep-weak zone somewhere in the joint. This paper starts with the assumption that the size and creep strength of this zone are known, in addition to parent metal properties. Life prediction requires an efficient analysis technique (such as the reference stress method), which separates the structural and material problems, and does not require complex constitutive models. The approach is illustrated with a simple example of an IN617 main steam girth weld, which could be present in an advanced plant concept with 700°C steam temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
..., 2010,30(07):554-558. [2] Ahmad J, Purbolaksono J, Beng L C. Failure analysis on high temperature superheater ineonel 800 tube. Engineering Failure Analysis, 2010,17(1):328-333. [3] Liu Yacheng, Fan Weidong, Zhang Xiang, et al. High-Temperature Corrosion Properties of Boiler Steels under a Simulated High...
Abstract
View Papertitled, Study on the Magnetic Nondestructive Testing Technology for Oxide Scales
View
PDF
for content titled, Study on the Magnetic Nondestructive Testing Technology for Oxide Scales
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... bending. According to failure analysis on a number of cracked sample of stainless steel elbow, it can be concluded that such a problem belongs to intergranular stress corrosion cracking [3,4], as shown in Fig. 3, induced under the combined effect of bending stress of elbow, thermal expansion stress...
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1151-1162, October 22–25, 2013,
... and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes. austenitic stainless steel boiler tubes electron probe X-ray microanalysis failure analysis martensitic stainless steel microstructural analysis nickel-base superalloys phase...
Abstract
View Papertitled, Applications of a Phase <span class="search-highlight">Analysis</span> Technology to Advanced Heat Resistant Steels and Nickel-Base Superalloys
View
PDF
for content titled, Applications of a Phase <span class="search-highlight">Analysis</span> Technology to Advanced Heat Resistant Steels and Nickel-Base Superalloys
An approach to phase analysis called multiphase separation technology (MPST) has been developed to determine phase chemistries of precipitated particles with sizes visible under SEM/EPMA observations based on the data from the conventional EDS measurements on bulk steel/alloy material samples. Quite accurate results from its applications have successfully been demonstrated by comparisons of SEM/EPMA - EDS + MPST with some other currently available means, for instance, chemical extractions (CA), TEM-EDS, AP-FIM and Thermo-Calc. etc. Applied examples regarding the relations of change in phase parameters including type, composition, volume fraction, size and distribution of the precipitated particles with material qualities, creep rupture lives, property stabilities, property recovery and boiler tube failures for some advanced heat resistant steels (P92, Super304H, HR3C, TP347HFG (H)) are given through the use of the SEM/EPMA - EDS + MPST in this contribution. Examples on phase quantifications of some nickel base superalloys (Nimonic263, Inconel 740 and Rhenium-containing alloys) are also shown to reveal the feasibility of its use in determining phase chemistries of precipitated particles under different measurement conditions. Practical applications of this combined technology to the material quality control and assessments, processing parameter improvements, as well as fracture/failure analyses of high temperature components have shown that this technology is quite convenient and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 948-959, October 22–25, 2013,
.... [13] L. Falat, A. Výrostková, V. Homolová and M. Svoboda, Creep Deformation and Failure of E911/E911 and P92/P92 Similar Weld-Joints, Engineering Failure Analysis, No. 16 (2009), pp. 2114-2120. [14] Lei Zhao, Hongyang Jing, Lianyong Xu, Yongdian Han and Junjie Xiu, Experiment Study on Creep Damage...
Abstract
View Papertitled, Investigations on the Degradation Mechanism of Welded Joints of Advanced 9%Cr-Mo-Co-B Steel Used for 620°C USC Steam Turbine
View
PDF
for content titled, Investigations on the Degradation Mechanism of Welded Joints of Advanced 9%Cr-Mo-Co-B Steel Used for 620°C USC Steam Turbine
The creep rupture properties of welded joints of advanced 9%Cr-Mo-Co-B steel used for 620°C USC steam turbine have been studied. The welded joints were prepared by means of shielded metal arc welding (SMAW). A lot of creep tests have been conducted and the results indicate that fracture usually occurs in the intercritical heat affected zone (ICHAZ) of the welded joint and is typical of Type IV cracking. The microstructure of the HAZ has been investigated by using optical microscopy, SEM and TEM. The degradation mechanism of welded joint of the 9%Cr-Mo-Co-B steel has been explored by analysing the phases of precipitates. Creep voids were observed in the vicinity of the coarse Laves phase particles, resulting in the degradation of the creep rupture properties.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, February 25–28, 2025,
... analysis of cracks in the vent piping within an HRSG unit. Thermocouples and high-temperature strain gauges were installed at various piping locations to compare data during operation and identify root causes. RESULT AND DISCUSION 1. Failure Analysis During maintenance in October 2023, the damaged vent...
Abstract
View Papertitled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
View
PDF
for content titled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, February 25–28, 2025,
.... Liu, Y. Yin, T. Wang, G. Sun, C. Liu, L. Shen, D. Ji, W. Pan, Microstructure and failure analysis of TP347H/T91 dissimilar steel welded piping, Journal of Failure Analysis and Prevention 22(2) (2022) 578-586. [5] L. Falat, M. Svoboda, A. Výrostková, I. Petryshynets, M. Sopko, Microstructure and creep...
Abstract
View Papertitled, Modeling-Based Design and Optimization of a Gradient Composite Transition Joint
View
PDF
for content titled, Modeling-Based Design and Optimization of a Gradient Composite Transition Joint
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 530-553, August 31–September 3, 2010,
... Abstract The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum...
Abstract
View Papertitled, Life Assessment of High Temperature Welded Components
View
PDF
for content titled, Life Assessment of High Temperature Welded Components
The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum damage mechanics (CDM) analysis techniques which have been developed over the last 20 years. The complexity of the CDM methods and their data requirements has been a barrier to their more widespread use. The need for simplified methods has been driven by the need for risk assessment of in-service high temperature welded piping and headers around the world, the need to connect cross-weld data to weld joint design and assessment, and in general, the need to develop suitable guidelines for evaluating the strength of weldments relative to that of base metal.
1