Skip Nav Destination
Close Modal
Search Results for
elastic anisotropy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6 Search Results for
elastic anisotropy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 535-545, October 21–24, 2019,
... propagation rate and the transition behavior were strongly influenced by the crystallographic orientations. To interpret these experimental results, crystal plasticity finite element analysis was carried out, taking account some critical factors such as elastic anisotropy, crystal orientations, 3-D geometry...
Abstract
View Paper
PDF
In this study, fatigue crack propagation behavior at lower temperature in single crystal nickel-base superalloys was investigated experimentally and analytically. Four types of compact specimens with different combinations of crystal orientations in loading and crack propagation directions were prepared, and fatigue crack propagation tests were conducted at room temperature and 450°C. It was revealed in the experiments that the crack propagated in the shearing mode at room temperature, while the cracking mode transitioned from the opening to shearing mode at 450°C. Both the crack propagation rate and the transition behavior were strongly influenced by the crystallographic orientations. To interpret these experimental results, crystal plasticity finite element analysis was carried out, taking account some critical factors such as elastic anisotropy, crystal orientations, 3-D geometry of the crack plane and the activities of all 12 slip systems in the FCC crystal. A damage parameter based on the slip plane activities derived from the crystal plasticity analysis could successfully rationalize the effect of primary and secondary orientations on the crystallographic cracking, including the crack propagation paths and crack propagation rates under room temperature. The proposed damage parameter could also explain the transition from the opening to crystallographic cracking observed in the experiment under 450°C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, October 15–18, 2024,
... deforms. This degree of bending strain during the main elastic loading of the lattice single ligament test pieces is relatively low and within expected limits. The results of the analysis of the stress-strain data are presented in Table 1, which shows the elastic modulus, yield stress and ultimate tensile...
Abstract
View Paper
PDF
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 99-110, October 15–18, 2024,
... & Sciences, 1 (2000) 79-88. [26] R.A. Lebensohn, N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Materialia, 49 (2001) 2723-2737. [27] R. Brenner, R.A. Lebensohn, O. Castelnau, Elastic anisotropy and yield surface estimates of polycrystals, Int J Solids Struct, 46 (2009...
Abstract
View Paper
PDF
This study investigates how temperature affects the plasticity and thermal creep behavior of 347H stainless steel under uniaxial tension. The research combined experimental testing with advanced computational modeling. Two types of experiments were conducted: uniaxial tensile tests at temperatures from 100°C to 750°C using strain rates of ~10⁻⁴ s⁻¹, and creep tests at temperatures between 600°C and 750°C under various stress levels. These experimental results were used to develop and validate a new integrated mechanistic model that can predict material behavior under any loading condition while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide, dislocation climb, and vacancy diffusional creep. The model accounts for internal stress distribution within single crystals and considers how precipitates and solute atoms (both interstitial and substitutional) affect dislocation movement. After validation against experimental data, the model was used to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 735-749, October 15–18, 2024,
... and conditions, degree of hot reduction and heat treatment history. Since the cross-sectional area of weld metal stringer beads is over 100 times less than that of a base metal, there is significantly less time for this type of macro segregation to occur. Anisotropy of steels is common due to the elongation...
Abstract
View Paper
PDF
This study investigates a novel approach to addressing the persistent Type IV cracking issue in Grade 91 steel weldments, which has remained problematic despite decades of service history and various mitigation attempts through chemical composition and procedural modifications. Rather than further attempting to prevent heat-affected zone (HAZ) softening, we propose eliminating the vulnerable base metal entirely by replacing critical sections with additively manufactured (AM) weld metal deposits using ASME SFA “B91” consumables. The approach employs weld metal designed for stress-relieved conditions rather than traditional normalizing and tempering treatments. Our findings demonstrate that the reheat cycles during AM buildup do not produce the substantial softening characteristic of Type IV zones, thereby reducing the risk of premature creep failure. The study presents comprehensive properties of the AM-built weld metal after post-weld heat treatment (PWHT), examines factors influencing deposit quality and performance, and explores the practical benefits for procurement and field construction, supported by in-service data and application cases.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, October 15–18, 2024,
... and orientation. Depending on the build orientation, microstructures from equiaxed to textured grains can develop. In the case of a textured microstructure, a clear anisotropy of the mechanical properties affecting short- and long-term mechanical properties can be observed. The PBF-LB/M build orientation affects...
Abstract
View Paper
PDF
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 449-460, October 15–18, 2024,
... with original mechanical properties. The modulus of elasticity is also expected to be affected, potentially decreasing due to the loss of the precipitate- 458 strengthening effect. In addition, the presence of the phase can increase the yield strength and reduce the alloy's ductility. The modulus...
Abstract
View Paper
PDF
This study demonstrates the Electro-Thermal Mechanical Testing (ETMT) system's capability to analyze the thermo-mechanical behavior of Inconel 718 (IN718) at a heating rate of 5 °C/s, achieving temperatures up to 950 °C. The temperature profile peaks at the sample's center and is approximately 25 °C at the extremes. Upon reaching 950 °C, the sample was aged for 30 hours before being rapidly quenched. This process froze the microstructure, preserving the phase transformations that occurred at various temperatures across the temperature parabolic gradient, which resulted in a complex gradient microstructure, providing a comprehensive map of phase transformations in IN718. The integration of thermal measurement, COMSOL modeling, scanning electron microscopy enabled a thorough characterization of the microstructural evolution in IN718, linking observed phases to the specific temperatures which provided a rapid screening of the effect of using different heating treatment routes.