Skip Nav Destination
Close Modal
Search Results for
dislocations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 197
Search Results for dislocations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
... to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep...
Abstract
View Papertitled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 99-110, February 25–28, 2025,
... while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide...
Abstract
View Papertitled, Experimental and Numerical Characterization of High Temperature Deformation Behavior of 347H Stainless Steel
View
PDF
for content titled, Experimental and Numerical Characterization of High Temperature Deformation Behavior of 347H Stainless Steel
This study investigates how temperature affects the plasticity and thermal creep behavior of 347H stainless steel under uniaxial tension. The research combined experimental testing with advanced computational modeling. Two types of experiments were conducted: uniaxial tensile tests at temperatures from 100°C to 750°C using strain rates of ~10⁻⁴ s⁻¹, and creep tests at temperatures between 600°C and 750°C under various stress levels. These experimental results were used to develop and validate a new integrated mechanistic model that can predict material behavior under any loading condition while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide, dislocation climb, and vacancy diffusional creep. The model accounts for internal stress distribution within single crystals and considers how precipitates and solute atoms (both interstitial and substitutional) affect dislocation movement. After validation against experimental data, the model was used to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
... will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults...
Abstract
View Papertitled, Research on Magnetic Behavior of Austenitic Heat-Resistant Steel Boiler Tubes After Service
View
PDF
for content titled, Research on Magnetic Behavior of Austenitic Heat-Resistant Steel Boiler Tubes After Service
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 458-465, October 11–14, 2016,
... of specification. Changes of dislocation structure and precipitates distributions were observed for the grip and gauge portions of creep interrupted samples. The subgrain size gradually increased with increasing creep time up to 50000h in both the grip and gauge portions. However, the subgrain size abruptly...
Abstract
View Papertitled, Effect of Stress and Strain on Microstructural Changes During Long-Term Creep in T91 Steel
View
PDF
for content titled, Effect of Stress and Strain on Microstructural Changes During Long-Term Creep in T91 Steel
In order to clarify the effect of stress and strain on microstructural changes during creep for T91 steel, creep interrupted tests were performed at 600°C for 10000h, 20000h, 30000h, 50000h and 70000h. The steel studied was T91 steel with high Ni content (0.28mass%) in the range of specification. Changes of dislocation structure and precipitates distributions were observed for the grip and gauge portions of creep interrupted samples. The subgrain size gradually increased with increasing creep time up to 50000h in both the grip and gauge portions. However, the subgrain size abruptly increased after 50000h in the gauge portion as compared with the grip portion. Decrease in dislocation density inside subgrain was promoted in the gauge portion as compared with the grip portion. The size of M 23 C 6 gradually increased with increasing creep time up to 50000h in both the grip and gauge portions. The increase in M 23 C 6 size was accelerated after 50000h in the gauge portion as compared with the grip portion. The Z phase formation was promoted in the gauge portion as compared with the grip portion. The number density of all kinds of particles gradually decreased with increasing creep time in the gauge and grip potions. After 50000h, the number density rapidly decreased in the gauge portion as compared with the grip portion.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
... temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified...
Abstract
View Papertitled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
View
PDF
for content titled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
... an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation...
Abstract
View Papertitled, The New Metallurgical Precipitation Strengthening Model of W Containing Advanced High Cr Ferritic Creep Resistant Steels
View
PDF
for content titled, The New Metallurgical Precipitation Strengthening Model of W Containing Advanced High Cr Ferritic Creep Resistant Steels
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1256-1269, October 25–28, 2004,
... Abstract This study explores methods to enhance the creep strength of 12%Cr martensitic/ferritic steels. The approach focuses on utilizing various precipitates to hinder microstructure coarsening and dislocation movement. A combination of Laves phase (slow precipitation) and MX carbonitrides...
Abstract
View Papertitled, Improvement of Creep Strength of Heat-Resistant Martensitic/Ferritic 12%Cr Steels
View
PDF
for content titled, Improvement of Creep Strength of Heat-Resistant Martensitic/Ferritic 12%Cr Steels
This study explores methods to enhance the creep strength of 12%Cr martensitic/ferritic steels. The approach focuses on utilizing various precipitates to hinder microstructure coarsening and dislocation movement. A combination of Laves phase (slow precipitation) and MX carbonitrides (dislocation pinning) is used for sustained strengthening. Different MX-forming elements (V, Ta, Ti) are investigated to identify the optimal combination for high quantities of finely distributed strengthening particles. Additionally, cobalt and copper are employed to promote a fully martensitic microstructure and potentially slow down diffusion or provide nucleation sites for Laves phase precipitation. Long-term creep tests confirm the effectiveness of Laves phase precipitation, particularly with tungsten present. Tantalum's influence on both MX precipitation and the Laves phase is also observed. Combining multiple MX-forming elements (V/Ta, V/Ti, Ta/Ti) further improves creep strength, supported by predictions of high MX carbonitride formation from Thermo-Calc calculations. Partially replacing cobalt with copper (1%) also demonstrates positive effects on creep properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 273-281, October 21–24, 2019,
... to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were...
Abstract
View Papertitled, Creep-Fatigue Interactions in 9CR Martensitic Cast Steel—Microstructure and Mechanical Behavior
View
PDF
for content titled, Creep-Fatigue Interactions in 9CR Martensitic Cast Steel—Microstructure and Mechanical Behavior
This study presents a characterization of the microstructural evolutions taking place in a 9%Cr martensitic cast steel subjected to fatigue and creep-fatigue loading. Basis for this study of investigation is an extensive testing program performed on a sample heat of this type of steel by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were determined by using thin metal foils in TEM. A recovery process consisting of the coarsening of the subgrains and a decrease of the dislocation density was observed in different form. This coarsening is heterogeneous and depends on the applied temperature, strain amplitude and hold time. These microstructural observations are consistent with the very fast deterioration of creep properties due to cyclic loading.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1389-1394, October 21–24, 2019,
... to overcoming the pinning effect caused by interstitial atoms. Interestingly, at intermediate temperatures, an inverted primary creep phenomenon was noted, with an activation energy of approximately 240 kJ/mol within this range. This value, significantly larger than those associated with lattice or dislocation...
Abstract
View Papertitled, Creep Behavior of Commercially Pure Titanium at Low and Intermediate Temperatures
View
PDF
for content titled, Creep Behavior of Commercially Pure Titanium at Low and Intermediate Temperatures
Titanium is extensively utilized in the aerospace industry due to its low density and excellent mechanical and chemical properties. Given that components in this sector are exposed to temperatures up to 873 K, representing 45% of the metal's melting point, understanding the mechanical properties in this temperature range is crucial for ensuring flight safety. This study focuses on examining the creep behavior of pure titanium to gain insights into its fundamental mechanical response. Creep was observed to occur at stresses exceeding micro-yielding levels around 297 K, primarily attributed to overcoming the pinning effect caused by interstitial atoms. Interestingly, at intermediate temperatures, an inverted primary creep phenomenon was noted, with an activation energy of approximately 240 kJ/mol within this range. This value, significantly larger than those associated with lattice or dislocation-core diffusions, suggests the potential movement of dislocations with interstitial atoms, similar to the diffusion of oxygen or nitrogen within titanium. Moreover, fracture strain exceeded 80% at temperatures surpassing 673 K, possibly resulting from grain boundary diffusion mechanisms akin to superplasticity. The activation energy for this mechanism, at 97 kJ/mol, is adequate for activating grain boundary deformation at intermediate temperatures.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1429-1435, October 21–24, 2019,
... at high stress level, whereas deformed region is extended within grain interiors. From these results it is suggested that α 2 plate act as the obstacle for dislocation motion in the γ matrix at high stress and that interfacial dislocation promote the creep deformation at low stress. creep...
Abstract
View Papertitled, Effect of Widmanstätten-Type α2-Ti3Al Plates on Creep in γ-TiAl Based Alloy
View
PDF
for content titled, Effect of Widmanstätten-Type α2-Ti3Al Plates on Creep in γ-TiAl Based Alloy
In this study the effect of Widmanstätten-type morphology α 2 plates on creep has been investigated by preparing nearly equiaxed γ (N γ ) and nearly equiaxed γ having Widmanstätten-type α 2 plates within grain (Wα 2 ). Creep tests were conducted at 1073 K under constant stresses, high stress and low stress, in air. At the high stress, Wα 2 shows creep rate smaller than N γ in transient stage, both specimens show similar minimum creep rate and the creep strain at minimum creep rate is 3 % for Wα 2 and 10 % for N γ, since N γ shows prolonged primary region. In acceleration stage, both show similar behavior with rupture time of about 50 h and rupture elongation of 60 %. At the low stress, on the other hand, reverse behavior occurs, that is, W α 2 shows creep rate higher than Nγ in transient stage. The regions near grain boundaries progressively deformed for both specimens at high stress level, whereas deformed region is extended within grain interiors. From these results it is suggested that α 2 plate act as the obstacle for dislocation motion in the γ matrix at high stress and that interfacial dislocation promote the creep deformation at low stress.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1149-1160, February 25–28, 2025,
... exponents comparable to those obtained from conventional creep testing. The findings suggest a shift in the deformation mechanism from dislocation glide to dislocation climb in the sample irradiated to 6 dpa at 400 °C. defect clusters Frank loops hardening iron-chromium-manganese-nickel alloys...
Abstract
View Papertitled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
View
PDF
for content titled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
A FeCrMnNi concentrated solid-solution alloy was irradiated with a 2 MeV proton beam up to 1 dpa and 6 dpa at temperatures of 400 °C and 600 °C. The microstructural changes induced by irradiation were characterized using Transmission Electron Microscopy (TEM). In samples irradiated at 400 °C, Frank loops were the predominant form of lattice damage at 1 dpa, whereas small defect clusters were more prevalent at 6 dpa. For the sample irradiated to 1 dpa at 600 °C, both Frank loops and small defect clusters were present in similar density. Nanoindentation was employed to assess the changes in mechanical properties (hardness) post-irradiation, revealing significant hardening in all irradiated samples. The results indicated that the hardening effect began to saturate at 1 dpa or earlier. Additionally, nanoindentation creep tests with a 1200-second dwell period produced stress exponents comparable to those obtained from conventional creep testing. The findings suggest a shift in the deformation mechanism from dislocation glide to dislocation climb in the sample irradiated to 6 dpa at 400 °C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 360-369, October 21–24, 2019,
... the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models...
Abstract
View Papertitled, Microstructurally Based Modeling of Creep Deformation of Martensitic Steels
View
PDF
for content titled, Microstructurally Based Modeling of Creep Deformation of Martensitic Steels
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1027-1035, October 11–14, 2016,
... and scanning electron microscopy were performed to investigate dislocation behaviour in these areas chemical composition creep resistance ferritic steel grain boundaries hot-rolling intermetallic particle evolution material failure microstructure particle hardening sub-grain structures...
Abstract
View Papertitled, Microstructure and Intermetallic Particle Evolution in Fully Ferritic Steels
View
PDF
for content titled, Microstructure and Intermetallic Particle Evolution in Fully Ferritic Steels
In the present study a creep resistant, ferritic steel, based on the chemical composition of Crofer 22 H, was analysed regarding microstructure and particle evolution. Because of the preceding hot-rolling process formation of sub-grain structures was observed, which disappears over time. Additionally formation of particle-free zones close to high angle grain boundaries was observed. These zones are considered to be responsible for long-term material failure by lacking particle hardening and thus a concentration of deformation. Therefore in-depth analyses by transmission and scanning electron microscopy were performed to investigate dislocation behaviour in these areas
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
... characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep...
Abstract
View Papertitled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
View
PDF
for content titled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 321-332, October 22–25, 2013,
.... Martensitic lath microstructures with high density dislocations and the precipitations of M 23 C 6 , VX, NbX and M2X are observed after the quality heat treatments at the center portion of both forgings. There is no large difference in the martensitic lath widths, distributions, and sizes of those particles...
Abstract
View Papertitled, Manufacturing of Trial Rotor Forging of 9%Cr Steel Containing Co and B (X13CrMoCoVNbNB9-2-1) for Ultrasupercritical Steam Turbines
View
PDF
for content titled, Manufacturing of Trial Rotor Forging of 9%Cr Steel Containing Co and B (X13CrMoCoVNbNB9-2-1) for Ultrasupercritical Steam Turbines
A 9% Cr steel containing cobalt and boron, X13CrMoCoVNbNB9-2-1, has been manufactured by electroslag remelting (ESR) to evaluate its performance and to compare its creep strength and microstructure to a forging made from electroslag hot-topping ingot. The evaluation results confirm that it is possible to produce rotor forgings with homogeneous composition and good properties by the ESR process. The results of creep rupture tests up to 5000 h indicate that the creep strength of the forging made from ESR ingot is similar to that of the forging produced by the electroslag hot-topping process. Martensitic lath microstructures with high density dislocations and the precipitations of M 23 C 6 , VX, NbX and M2X are observed after the quality heat treatments at the center portion of both forgings. There is no large difference in the martensitic lath widths, distributions, and sizes of those particles between both trial forgings.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 607-614, October 22–25, 2013,
... in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. It was checked the multiaxiality of stress during creep was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. The recovery of dislocation structure occurred after...
Abstract
View Papertitled, Effect of Stress State on Microstructural Change during Creep in Grade 92 Steel Welded Joint
View
PDF
for content titled, Effect of Stress State on Microstructural Change during Creep in Grade 92 Steel Welded Joint
In order to clarify the effect of stress state on microstructural changes during creep, the microstructure was observed in the central part of the cross section of the fine-grained heat-affected zone (FGHAZ) and in the surface region of the FGHAZ in Gr.92 steel welded joint. Creep tests were performed under constant load in air at 650°C, using cross-weld specimens. The creep strength of welded joint was lower than that of base metal. Type IV fracture occurred in the long-term. Creep voids were detected in the FGHAZ after the fracture. Number of creep voids was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. It was checked the multiaxiality of stress during creep was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. The recovery of dislocation structure occurred after creep in the base metal and the FGHAZ. Mean subgrain size increased with increasing time to rupture. However, there was no difference of change of subgrain size during creep in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ. The growth of M 23 C 6 carbide and MX carbonitrides was observed during creep in the base metal and the FGHAZ. Laves phase precipitation occurred during creep. There was no difference of the change of mean diameter of MX carbonitrides in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ after creep. However, the growth rate of M 23 C 6 carbide in the FGHAZ was much higher in the central part of the cross section than in the surface region.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 191-201, October 25–28, 2004,
... prior austenite grain boundaries, as excess dislocations inside the grain are difficult to rearrange. This paper presents a new approach using carbon-free martensitic alloys strengthened by intermetallic compounds. An iron-nickel-cobalt martensite matrix with Laves phase as the precipitate is selected...
Abstract
View Papertitled, Innovative Research and Development of Heat Resistant Structural Materials for USC Power Plants
View
PDF
for content titled, Innovative Research and Development of Heat Resistant Structural Materials for USC Power Plants
Achieving long-term stability of the tempered martensite is considered crucial for increasing the creep resistance of steels at elevated temperatures above 700°C. It is noted that at low stress levels, the creep deformation of the tempered martensite proceeds heterogeneously around prior austenite grain boundaries, as excess dislocations inside the grain are difficult to rearrange. This paper presents a new approach using carbon-free martensitic alloys strengthened by intermetallic compounds. An iron-nickel-cobalt martensite matrix with Laves phase as the precipitate is selected. The creep characteristics are discussed across a wide range of testing conditions, and the thermal cycle test behavior is examined to evaluate the potential of these alloys for future ultrasupercritical power plants operating in severe environments.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness. austenitic stainless steel boilers creep strength dislocations microhardness microstructure nickel-base superalloys optical microscopy pulverized coal power...
Abstract
View Papertitled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
View
PDF
for content titled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1146-1159, October 25–28, 2004,
... and carbonitride precipitates interact with dislocations, thereby enhancing the strength. The relative contributions of the martensitic transformation and the various precipitates to the overall creep strength of the steels are assessed. Of particular importance for the long-term creep strength is the stability...
Abstract
View Papertitled, Creep Strengthening Mechanisms in 9-12% Chromium Steels
View
PDF
for content titled, Creep Strengthening Mechanisms in 9-12% Chromium Steels
The development of 9-12% chromium steels during the last twenty years is reviewed. The significant increases in creep strength that have been achieved by minor alloying additions of V, Nb, W, Mo, N and B are discussed and the mechanisms by which the individual elements contribute to the long-term creep strength are evaluated. The basic strengthening is provided by the martensitic transformation that allows the formation of a sub-grain structure from the martensite laths. The sub-grain boundaries are stabilized by precipitates, mainly M 23 C 6 ; within the sub-grains, fine nitride and carbonitride precipitates interact with dislocations, thereby enhancing the strength. The relative contributions of the martensitic transformation and the various precipitates to the overall creep strength of the steels are assessed. Of particular importance for the long-term creep strength is the stability of the microstructure, especially the time dependent coarsening of the various precipitates and the possible formation of additional phases, such as Laves phase (Fe 2 (W,Mo) and the Z phase (CrNbN). It is shown that microstructural changes that occur during exposure at anticipated service temperatures have a large impact on the strength and these changes must be taken into account in the derivation of long-term design stresses. Finally, the potential for achieving further increases in the creep strength of 9-12% chromium steels is discussed, especially in view of the need for higher chromium contents to ensure adequate steam oxidation resistance.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process. allowable tensile stress creep deformation creep strength enhanced ferritic steel creep rupture life...
Abstract
View Papertitled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
View
PDF
for content titled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
1