Skip Nav Destination
Close Modal
Search Results for
dimensional stability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-19 of 19 Search Results for
dimensional stability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 407-417, October 11–14, 2016,
... carbides. Primary Z-phase particles were present in the matrix after solution annealing, while secondary Z-phase particles formed during creep. Precipitation of Z-phase was more intensive at 625°C. The dimensional stability of Z-phase particles was excellent and these particles had a positive effect...
Abstract
View Paper
PDF
The paper deals with microstructural evolution in the AISI 316LN + 0.1 wt.% Nb steel during long-term creep exposure at 600 and 625°C. The following minor phases formed: Z-phase (NbCrN), M 23 C 6 , M6X (Cr3Ni2SiX type), η-Laves (Fe2Mo type) and σ-phase. M6X gradually replaced M 23 C 6 carbides. Primary Z-phase particles were present in the matrix after solution annealing, while secondary Z-phase particles formed during creep. Precipitation of Z-phase was more intensive at 625°C. The dimensional stability of Z-phase particles was excellent and these particles had a positive effect on the minimum creep rate. However, niobium also accelerated the formation and coarsening of σ-phase, η-Laves and M6X. Coarse particles, especially of σ-phase, facilitated the development of creep damage, which resulted in poor long-term creep ductility.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1001-1009, October 11–14, 2016,
... the viewpoint of creep the M2X phase is less advantageous than the MX phase because it is less thermodynamically and dimensionally stability. [6, 7] Mechanical properties of simulated HAZ regions of the T24 steel welded joint Smitweld simulation technique was used for detailed study of the particular HAZ...
Abstract
View Paper
PDF
The efficiency of power plants is depending on the steam temperature and/or the steam pressure. Efficiency increasing from 35% to 42-45% require increasing of the steam temperature over 600°C and the pressure over 26 MPa. According to the designer opinion it is not profitable to use classical low alloy creep resistant steels 16Mo3, 13CrMo4-5 or 10CrMo9-10 for membrane waterwall construction for these service condition. New modified low alloy creep resistance T23 and T24 (7CrMoVTiB10-10) steels were developed for membrane waterwalls. Welding of these steels with small thickness (around 6.3 mm) should be enabled without preheating and post weld heat treatment (PWHT) due to the lower carbon content below 0.1%. High creep rupture strength (CRS) values are achieved by Ti, N and B elements alloyed to T24 steel. The original expectation that the welding small thickness without preheating was early overcome and was wrong. According to the present experience the T24 steel is welded with preheating at 150-250°C depending on the wall thickness and welded joint toughness in order to achieve required hardness and impact toughness values. Opinions on the T24 welded joints post weld heat treatment (PWHT) requirements are still inconsistent. Especially the membrane waterwalls of the supercritical power plants are still produced without PWHT.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1193-1203, October 21–24, 2019,
... alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully...
Abstract
View Paper
PDF
Research and development of 700°C A-USC steam turbine unit needs to be supported by materials with excellent overall performance. Waspaloy is a kind of γ′ phase precipitation hardening superalloy developed by the United States in the 1950s. In the 700°C R&D Plan of Shanghai Turbine Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully meet the requirements of high-temperature blades and bolts of 700°C A-USC unit. It shows that the 700°C A-USC unit high temperature blades and bolts were successfully developed by Shanghai Turbine Plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 98-119, October 22–25, 2013,
... Abstract This overview paper contains a part of structure stability study on advanced austenitic heat-resisting steels (TP347H, Super304H and HR3C) and Ni-base superalloys (Nimonic80A, Waspaloy and Inconel740/740H) for 600-700°C A-USC fossil power plant application from a long-term joint...
Abstract
View Paper
PDF
This overview paper contains a part of structure stability study on advanced austenitic heat-resisting steels (TP347H, Super304H and HR3C) and Ni-base superalloys (Nimonic80A, Waspaloy and Inconel740/740H) for 600-700°C A-USC fossil power plant application from a long-term joint project among companies, research institutes and university in China. The long time structure stability of these advanced austenitic steel TP347H, Super304H, HR3C in the temperature range of 650-700 °C and Ni-base superalloys Nimonic80A, Waspaloy and Inconel740/740H in the temperature range of 600-800°C till 10,000h have been detailed studied in this paper.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 101-124, October 11–14, 2016,
... was characterized by Shingledecker [8]. Another commonly used method is hot induction bending. This method is needed for heavy-wall pipe. Induction pipe bending was not investigated in the early work and hence became a prime objective for the present study. The issues posed by bending are dimensional stability...
Abstract
View Paper
PDF
INCONEL alloy 740H has been specified for tube and pipe for the boiler and heat exchanger sections of AUSC and sCO 2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube sheets. The initial evaluation of alloy 740H properties, leading to ASME Code Case 2702, was done on relatively small cross-section tube and plate. The production of fittings involves the use of a wide variety of hot or cold forming operations. These components may have complex geometric shapes and varying wall thickness. The utility industry supply chain for fittings is largely unfamiliar with the processing of age-hardened nickel-base alloys. Special Metals has begun to address this capability gap by conducting a series of trials in collaboration with selected fittings manufacturers. This paper describes recent experiences in first article manufacture of several components. The resulting microstructure and properties are compared to the published data for tubular products. It is concluded that it will be possible to manufacture most fittings with properties meeting ASME Code minima using commercial manufacturing equipment and methods providing process procedures appropriate for this class of alloy are followed. INCONEL and 740H are registered trademarks of Special Metals Corporation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 333-343, October 22–25, 2013,
... ingot was found to be equal to that of 600 ton ingots. Subsequently, in 2011, we produced a 670 ton ingot, the world’s largest, to produce a trial LP rotor shaft forging with a diameter of 3,200 mm. Results show that the internal quality, mechanical properties, and heat stability are the same as LP...
Abstract
View Paper
PDF
Monoblock low-pressure (LP) turbine rotor shaft forgings for nuclear power plants have been produced from up to 600 ton ingots. However, ingots greater than 600 tons are necessary to increase the generator capacity. Segregation, non-metallic inclusions, and micro porosities inevitably increase with the increase in ingot size. Manufacturing such massive ingots with high soundness is quite difficult. Thus, the development of 650 ton ingot production was carried out in 2010. The 650 ton ingot was dissected and investigated to verify its internal quality. The internal quality of the 650 ton ingot was found to be equal to that of 600 ton ingots. Subsequently, in 2011, we produced a 670 ton ingot, the world’s largest, to produce a trial LP rotor shaft forging with a diameter of 3,200 mm. Results show that the internal quality, mechanical properties, and heat stability are the same as LP rotor shaft forgings made from 600 ton ingots.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 448-459, October 21–24, 2019,
... base superalloy designed on the bases of Inconel 740[7-9], optimized for its creep strength, microstructure stability, hot corrosion resistance and heavy section weldability[10]. It was developed for high-temperature structural application by Special Metals Corporation of United States and considered...
Abstract
View Paper
PDF
Inconel 740H is one of the most promising candidate Ni-base superalloys for the main steam pipe of 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. After processing and welding in manufacturing plant in solution-annealed state, large components was commonly suggested to have an extra aging treatment at 800 °C for 16 h, in order to obtain homogeneous γ′ precipitates. In this present work, creep tests and microstructure analyses were conducted on Inconel 740H pipe specimens under two different heat treatments to verify the necessity of aging process. Here we show that aging treatment has limited effect on the creep rupture life of Inconel 740H pipe. Both in grain interiors and along grain boundaries, crept specimens under two different heat treatments have the same precipitates. But the shape and distribution of γ′ in solution annealed sample is not as regular as the aged ones. Our results provide the underlying insight that aging treatment is not so necessary for the straight pipes if the on-site condition was hard to control. But for both groups of specimens, a small amount of h particles and some banded like M 23 C 6 were emerged during creep, which would be harmful to mechanical properties for the long run.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 156-161, October 21–24, 2019,
... diffraction (EBSD). In addition, microstructures were 3-dimensionally observed by the FIB (Focuses Ion Beam)-SEM serial sectioning method. The low-accelerating-voltage SEM installed in the 3D observation system is capable of imaging 10 nm of MX carbo-nitrides formed in ferrite matrix, of which detailed...
Abstract
View Paper
PDF
Microstructure change during creep at 650°C has been examined for a high-B 9%Cr steel by FIB-SEM serial sectioning 3D observation, Nano-SIMS, SEM, EBSD and TEM. The precipitates formed in the steel were M 23 C 6 , Laves phase, and a quite small amount of MX. For as-tempered steel, precipitation of M 23 C 6 on the prior austenite grain boundaries was clearly found, while precipitation of the Laves phase was not confirmed during tempering. The volume fraction of the Laves phase gradually increased with elapsed time, while M 23 C 6 appeared to increase once and decrease afterward, based on the comparison between the 2,754 h ruptured sample and the 15,426 h ruptured sample. Nano-SIMS measurements have revealed that B segregates on the prior austenite grain boundaries during normalizing, and it dissolves into M 23 C 6 .
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1036-1045, October 11–14, 2016,
... Abstract A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASME grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep...
Abstract
View Paper
PDF
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASME grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASME grade 91, yet allow being processed in the same fashion, permitting the re-use of consolidated best practices for boiler fabrication. In order to evaluate the possibility to produce complete pressure part systems, various tests to manufacture components have been performed on Thor pipes and tubes (i.e. finning, bending, welding) and on Thor forged material (i.e. flanges). In all cases consolidated industrial best practices used on ASME grade 91 were applied, and resulting properties met ASME requirements.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 914-923, October 22–25, 2013,
... Abstract Boron and nitride additions are emerging as a promising design concept for stabilizing the microstructure of creep-resistant martensitic high-chromium steels. This approach, known as MarBN steel (martensitic steel strengthened by boron and nitrogen), combines the benefits of solid...
Abstract
View Paper
PDF
Boron and nitride additions are emerging as a promising design concept for stabilizing the microstructure of creep-resistant martensitic high-chromium steels. This approach, known as MarBN steel (martensitic steel strengthened by boron and nitrogen), combines the benefits of solid solution strengthening from boron with precipitation strengthening from nitrides. However, initial welding trials revealed challenges in achieving a uniform fine-grained region in the heat-affected zone (HAZ), which is crucial for mitigating Type IV cracking and ensuring creep strength. Despite these initial hurdles, preliminary creep test results for welded joints have been encouraging. This study presents an improved MarBN steel formulation and its investigation through uniaxial creep tests. Base material and welded joints were subjected to creep tests at 650°C for up to 25,000 hours under varying stress levels. The analysis focused not only on the creep strength of both the base material and welded joints but also on the evolution of damage. Advanced techniques like synchrotron micro-tomography and electron backscatter diffraction were employed to understand the underlying creep damage mechanisms. By combining long-term creep testing data with 3D damage investigation using synchrotron micro-tomography, this work offers a novel perspective on the fundamental failure mechanisms occurring at elevated temperatures within the HAZ of welded joints in these advanced steels.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
.... Sci. Technol. 19 (2003) 1253 [18] Y. Otoguro, M. Matsubara, I. Itoh, T. Nakazawa, Nucl. Eng. Des., 196 (2000)51 [19] X. Yu, S. S. Babu, H. Terasaki, Y. Komizo, Y. Yamamoto, M. Santella. Correlation of Precipitate Stability to Increased Creep Resistance of Cr-Mo Steel Welds Acta Materialia Volume 61...
Abstract
View Paper
PDF
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1169-1180, October 21–24, 2019,
... was conducted in accordance with procedures described in ASTM E139. In most cases, creep deformation was measured as a function of time using an extensometer. Final elongation was determined by dimensional measurements along the gage section using fiducial markers after the two pieces of the ruptured specimens...
Abstract
View Paper
PDF
This paper presents results and analyses from long-term creep-rupture testing of alloy CCA617 (also known as alloy 617B) in wrought and welded forms at temperatures and stresses relevant to power generation under advanced steam conditions. The refined controlled chemical composition of CCA617 resulted in increased creep-rupture strength compared to the conventional alloy 617 chemistry at applied stress levels of ~150 MPa and above. Long-term creep rupture testing of weldments (in one case, over 100,000 h) showed that their creep-rupture lives were dependent on the welding process. Gas-tungsten-arc and shielded metal-arc weldments of CCA617 performed nearly equivalent to standard alloy 617 base metals in creep, but there was some debit in creep-rupture resistance when compared to CCA617 base metal. Submerged arc welding produced weldments that were notably weaker than both versions of alloy 617 base metal under creep conditions, possibly due to lack of optimization of filler wire composition and flux.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 762-770, October 21–24, 2019,
... the Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders of Tohoku University, Japan. 7. REFERENCES [1] H. Wain, et al., "Further observations on the ductility of chromium," Journal of The Institute of Metals, 86(6) (1958), pp. 281-288. [2] G.R. Wilms, T.W. Rea, "The tensile creep...
Abstract
View Paper
PDF
Cr-based alloys have potential as heat-resistant materials due to the higher melting point and lower density of Cr. Although oxidation and nitridation at high temperatures are one of the drawbacks of Cr and Cr-based alloys, addition of Si has been reported to enhance the oxidation and nitridation resistance. This study focuses on the microstructure and mechanical properties in the Cr-Si binary alloys with the Cr ss + Cr 3 Si two-phase structure. The Cr-16at.%Si alloy showed an eutectic microstructure and hypoeutectic alloys with the lower Si composition exhibited a combination of the primary Cr ss and the Cr ss /Cr 3 Si eutectic microstructure. Compression tests at elevated temperatures were conducted for the hypoeutectic and the eutectic alloys in vacuum environment. Among the investigated alloys, the Cr-13at.%Si hypoeutectic alloy including the Cr 3 Si phase of about 40% was found to show the highest 0.2% proof stress of 526 MPa at 1000 °C. Its specific strength is 78.1 Nm/g which is roughly twice as high as that of Ni-based Mar-M247 alloy. It was also confirmed that the 0.2% proof stress at 1000 °C depends on not only the volume fraction of the Cr 3 Si phase, but also the morphology of the Cr ss + Cr 3 Si two-phase microstructure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1116-1126, October 22–25, 2013,
... is measured based on the flight time. All the data is recorded in time sequence, and can be used to reconstruct the atoms in 3-dimensional images afterwards [8]. 2.3.1 Sample preparation using two-stage electropolishing The steels were cut into small rods (~ 8 × 0.25 × 0.25 mm3) by a low speed saw. The rods...
Abstract
View Paper
PDF
Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J, for the original and the Z-Cu steel, respectively. In the original steel that contains no Cu, much more Laves-phase (Fe 2 (W,Mo)) precipitates had formed along the prior austenite grain boundaries than in the steel with Cu addition. This is believed to be the reason for the difference in impact strength. Furthermore, the Cu addition also influenced the morphology of Laves-phase precipitates; fine rod-shaped instead of coarse equiaxed Laves-phase particles were observed in Z-Cu steel in comparison to the original steel. No partitioning of Cu into the Laves-phase particles was detected by using atom probe tomography (APT). The main function of Cu seems to be the formation of Cu precipitates that act as nucleation site for Laves-phase.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
... and rated at nominally 160 kW by thermal input. The test facility, shown in Fig. 1, was capable of producing a down-fired, swirl-stabilized coal flame in a cylindrical combustion chamber of 265 cm in height and 75 cm in inner diameter. The inner surface of the combustion chamber was water-cooled and lined...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1340-1350, October 21–24, 2019,
...] Sosa, J. M. et al., "Development and application of MIPAR : a novel software package for two-and three-dimensional microstructural characterization," Integrating Materials and Manufacturing Innovation, Vol. 3, No. 1 (2014), pp. 10. [20] Gokhale, A. M., Quantitative Characterization and Representation...
Abstract
View Paper
PDF
The present study presents a detailed investigation on the evolution of the microstructure during welding on virgin and long-term service exposed (creep aged 1 = 535°C; 16.1 MPa; 156 kh and creep aged 2 = 555°C; 17.0 MPa; 130 kh) 12% Cr (X20CrMoV11-1) martensitic steel. This study was carried out in order to understand the impact of welding on prior creep exposed Tempered martensite ferritic (TMF) steel and to explain the preferential failure of weldments in the fine grained heat affected zone (FGHAZ) of the creep aged material side instead of the new material side. Gleeble simulation (Tp = 980°C; heating rate = 200 °C/s; holding time = 4 seconds) of the FGHAZ was performed on the materials to create homogeneous microstructures for the investigation. Quantitative microstructural investigations were conducted on the parent plate and simulated FGHAZ materials using advanced electron microscopy to quantify: a) voids, b) dislocation density, c) sub-grains, and d) precipitates (M 23 C 6 , MX, Laves, Z-phase) in the materials. Semi-automated image analysis was performed using the image analysis software MIPARTM. The pre-existing creep voids in the creep aged parent material and the large M 23 C 6 carbides (Ø > 300 nm) in the FGHAZ after welding are proposed as the main microstructural contributions that could accelerate Type IV failure on the creep aged side of TMF steel weldments.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... such as precipitates (M23C6, MX) act as obstacles to dislocation movement [11] and stabilize the subgrain structure [12]. Microstructural instabilities such as a decrease in dislocation density, subgrain and precipitate growth, and the formation of new phases (Laves and Z-phase) are considered to be responsible...
Abstract
View Paper
PDF
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
... N07740 range that provided greater microstructure stability and heavy-section weldability. The modified composition was designated alloy 740H [2]. This comprehensive program generated a data package that facilitated the establishment of American Society of Mechanical Engineers (ASME) Code 1132 Case 2702...
Abstract
View Paper
PDF
Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution-strengthened alloys if thinner tube wall can be specified. To date, the only age-hardened alloy that has been approved for service in the time dependent temperature regime in the ASME Boiler and Pressure Vessel Code is INCONEL alloy 740H. Extensive evaluation of seamless tube, pipe, and forged fittings in welded construction, including implant test loops and pilot plants, has shown the alloy to be fit for service in the 650-800°C (1202-1472°F) temperature range. Since, nickel-base alloys are much more expensive than steel, manufacturing methods that reduce the cost of material for advanced power plants are of great interest. One process that has been extensively used for stainless steels and solution-strengthened nickel-base alloys is continuous seam welding. This process has rarely been applied to age-hardened alloys and never for use as tube in the creep-limited temperature regime. This paper presents the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 632-643, October 11–14, 2016,
... cladding layer may be applied by weld overlay or a co-extrusion process, which is assumed to have microstructural stability as well as proper bonding to offer structural strength to the base tube under boiler operating conditions. While cladded tubing has successfully used for other sections...
Abstract
View Paper
PDF
High temperature regions in the upper sections of the advanced ultrasupercritical (AUSC) boilers are exposed to temperatures higher than traditional supercritical (SC) boilers and require high strength materials. Use of modified 9-12% Cr materials such as T91 and T92, while meeting the strength requirements, are still under research stage for large-scale fabrication of the membrane walls for several reasons, such as required post weld heat treatment PWHT (ASME Code) or hardness limits on as-welded structures (European codes). The main objective of this paper is to explore alternate tubing materials that do not require a PWHT in the high temperature sections of the AUSC boiler membrane walls. Composite bimetallic tubing with high strength cladding, applied by weld overlay or co-extrusion that may meet the requirement of high operating temperature and high overall strength, is addressed through an alternate design criterion. Bimetallic tubes can replace the single metal tubes made from 9-12% Cr materials. The bimetallic tube is assumed to be fabricated from Grade 23 steel (base tubes) with Alloy 617 overlaid. The alternate design method is based on an iterative analytical solution for the through-wall heat transfer and stresses in a composite tube with temperatures and strength variations of both the materials considered in detail. A number of different analyses were performed using the proposed analytical approach, methodology verified through benchmark solutions and then applied to the membrane wall configurations.