Skip Nav Destination
Close Modal
Search Results for
digital image correlation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 22 Search Results for
digital image correlation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1380-1388, October 21–24, 2019,
... Abstract Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure...
Abstract
View Paper
PDF
Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure constituents in deformation. The alloy with nearly lamellar microstructure, in which the volume fraction of β/γ duplex ( V DP ) is 10%, shows elongation of only 0.14%, whereas the alloy with nearly globular β/γ duplex microstructure with V DP of 94% shows elongation of 0.49%. In α 2 /γ lamellar microstructure, obvious strain localization occurs along lamellae and develops at specific regions with loading. In the case of β/γ duplex microstructure, strain localization is observed in γ grains and in β phase regions near the β/γ phase boundary, although no obvious deformation is observed in the β grains. β/γ phase boundaries enhances room temperature ductility of TiAl alloys by inducing multiple slip in γ phase and deformation of β phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 62-73, October 15–18, 2024,
... performance of developed alloys. To investigate the environmental sensitivity of candidate alloys and develop high temperature testing capabilities, four argon tensile frames were upgraded as well as a single vacuum system at Oak Ridge National Laboratory. Digital image correlation was incorporated...
Abstract
View Paper
PDF
Gas turbine efficiency is typically limited by the maximum allowable temperature for components at the inlet side and in the hot gas flow. Refractory alloys and SiC/SiC ceramic-matrix composites (CMCs) are promising candidates for advancing operating temperatures beyond those of Ni-based alloys (>1200 °C). Refractory alloys are more suitable than SiC/SiC CMCs for dynamic components, due to the latter's low toughness and ductility. However, it is well known that refractory alloys suffer from poor oxidation behavior under service lifetimes and conditions, leading to embrittlement concerns. The ARPA-E ULTIMATE program has set out to combine new alloys with advanced coatings to mitigate oxidation/embrittlement effects, while increasing the mechanical performance benefits of refractory materials. Low oxygen (inert gas) or vacuum systems are needed to assess high temperature mechanical performance of developed alloys. To investigate the environmental sensitivity of candidate alloys and develop high temperature testing capabilities, four argon tensile frames were upgraded as well as a single vacuum system at Oak Ridge National Laboratory. Digital image correlation was incorporated into the vacuum frame allowing for surface strain determination and refined insight into thermomechanical response. Creep testing was performed at 1300 °C on two alloys, C-103 and MHC in vacuum and high purity argon environments. The Mo-based alloy showed less sensitivity to oxygen, indicating that testing in well-controlled argon environments may be suitable. The C-103 alloy demonstrated a stronger sensitivity to oxygen in the well-controlled argon environment, illustrating the need for the developed vacuum testing capabilities. “Small” 25 mm and “large” 76 mm MHC specimens showed comparable results in terms of strain rate during creep testing and ultimate tensile strength during tensile testing, suggesting the viability of smaller geometries that use less material of advanced developmental alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, October 15–18, 2024,
... microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated...
Abstract
View Paper
PDF
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
... Abstract The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully...
Abstract
View Paper
PDF
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, October 15–18, 2024,
... produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain...
Abstract
View Paper
PDF
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
... plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC...
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1194-1198, October 11–14, 2016,
... variations have been seldom quantified. In addition, it has been long recognized that, due to the sharp microstructure and property gradients in the weld and HAZ, the standard creep testing procedure for the base metal can produce erroneous results when used for weld testing. Digital image correlation (DIC...
Abstract
View Paper
PDF
Fossil fuels continue to be the primary source of energy in the U.S and worldwide. In order to improve the efficiency of fossil power plants, advanced structural materials need to be developed and deployed to meet the need of high temperature creep resistance and corrosion resistance. Examples include creep strength enhanced ferritic (CSEF) steels, austenitic stainless steels, nickel-based superalloys, and oxide dispersion strengthened alloys. Welding is extensively used in construction of fossil power plants. The performance of the weld region can be critical to the safe and economical operation of fossil power plants. Degradations in performance such as reduced creep strength and premature failure in the weld region (e.g. Type IV failure in ferritic steels) are examples of longstanding welding and weldability problems for boiler and other components. In the past, extensive studies have been carried out to characterize the different microstructures in different regions of a weld, and to a certain extent, to establish the correlations between the microstructure and the creep strength. However, the metallurgical or microstructural induced local stress/strain variations have been seldom quantified. In addition, it has been long recognized that, due to the sharp microstructure and property gradients in the weld and HAZ, the standard creep testing procedure for the base metal can produce erroneous results when used for weld testing.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, October 15–18, 2024,
... enables the mechanical properties of single lattice strut elements to be measured in a universal test system and an in-situ micro test system. The single ligament test piece design has been extended to be used for testing lattice unit cells. Non-contact digital image correlation was successfully used...
Abstract
View Paper
PDF
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 960-968, October 15–18, 2024,
... of the creep specimen was observed by optical microscopy (OM) and atomic force microscopy (AFM) to detect creep voids. The strain was measured by an extensometer for high-temperature use, a capacitive strain sensor, and a laser displacement meter. SPICA strain (digital image correlation technique for speckle...
Abstract
View Paper
PDF
This study evaluates various nondestructive testing methods for detecting creep damage and assessing residual life in Grade 91 steel welds. Three primary detection techniques were investigated: phased array ultrasonic testing (PAUT), eddy current testing with high-temperature superconductor direct current and superconducting quantum interference device (ECT•HTS-dc-SQUID), and replica observation. PAUT detected creep damage between 60-80% of creep life, while ECT•HTS-dc-SQUID showed detection capability between 80-90% of creep life. Replica observation revealed creep voids only in the final stages before rupture. Additionally, three strain measurement methods were evaluated: capacitive strain sensors (providing continuous monitoring during creep exposure), laser displacement meters (used during test interruptions), and SPICA strain measurement. Both capacitive sensors and laser meters produced results comparable to conventional extensometer measurements. The SPICA method proved particularly effective in measuring heat-affected zone (HAZ) strain after creep exposure, revealing higher strain values in the HAZ compared to base and weld metal, with a consistent increase during creep exposure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1446-1456, October 21–24, 2019,
... circles in Fig. 9 (b This phenomenon is also confirmed by local strain analysis method that is combined with in-situ tensile test in field emission-SEM and digital image correlation (DIC) method, in our resent study [20]. From these results, it is suggested that Existence of the interphase boundaries play...
Abstract
View Paper
PDF
Effects of microstructure constituents of α 2 -Ti 3 Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. Microstructure analysis have revealed that intragranular fracture along γ/γ grain boundary occurred in γ single phase alloy whereas it does not along β/γ interphase in alloys containing β phase. In addition, local strain accumulations along β/γ interphase have been confirmed. The present results, thus, confirmed the significant contribution of β phase, especially the existence of β/γ interphase to enhancement of the room-temperature ductility in multicomponent TiAl alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, October 15–18, 2024,
... ER309 as filler metal. Both samples of AM-GCTJ and DMW were creep tested at 650 with an applied stress of 90 MPa. During creep testing, digital image correlation (DIC) was utilized to measure the in situ strain accumulation at different locations of joints, aiming to characterize the local deformation...
Abstract
View Paper
PDF
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, October 15–18, 2024,
... that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which...
Abstract
View Paper
PDF
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 969-983, October 15–18, 2024,
... at Elevated Temperatures. July 22-26, 2007, San Antonio, TX. Paper PVP2007-26030. [26] Y. Wang, W. Zhang, Y. Wang, J. Siefert, A. Bridges, S. Kung, and Z. Feng, "Remaining lifetime assessment of 141,000-hour service-aged forge 91-pipe 91 steel header welds with novel in-situ digital image correlation...
Abstract
View Paper
PDF
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of these simple rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. This is the second part of a two-part paper; Part I reviewed the selected tests and discussed them from a mechanical perspective. The association of performance with specific microstructural features is briefly reviewed in this paper and the remaining gaps are highlighted for consideration among the international community.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 735-749, October 15–18, 2024,
... consumables Another way to analyze the relative creep strength of weld metal under creep is by using in-situ monitoring methods. Digital image correlation (DIC) and synchrotron X-ray diffraction have been used during creep testing of grade 91 cross weld specimens. The DIC work at Oak Ridge National Laboratory...
Abstract
View Paper
PDF
This study investigates a novel approach to addressing the persistent Type IV cracking issue in Grade 91 steel weldments, which has remained problematic despite decades of service history and various mitigation attempts through chemical composition and procedural modifications. Rather than further attempting to prevent heat-affected zone (HAZ) softening, we propose eliminating the vulnerable base metal entirely by replacing critical sections with additively manufactured (AM) weld metal deposits using ASME SFA “B91” consumables. The approach employs weld metal designed for stress-relieved conditions rather than traditional normalizing and tempering treatments. Our findings demonstrate that the reheat cycles during AM buildup do not produce the substantial softening characteristic of Type IV zones, thereby reducing the risk of premature creep failure. The study presents comprehensive properties of the AM-built weld metal after post-weld heat treatment (PWHT), examines factors influencing deposit quality and performance, and explores the practical benefits for procurement and field construction, supported by in-service data and application cases.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 600-611, October 15–18, 2024,
...) and an infrared (IR) camera (model Xi 400 from Optris Infrared Sensing, not shown). The strain is measured using the Digital Image Correlation (DIC) technique. 601 The data acquisition system uses NI instrumentation to record analog signals (temperature, load, strain), and to control the current output...
Abstract
View Paper
PDF
Miniature specimen tests are necessary to assess the mechanical properties of new fuel cladding alloys for next-generation nuclear reactors. The small specimen allows for extensive testing programs from limited volumes of material. However, there is a lack of testing equipment to perform high-temperature mechanical tests on the miniature specimen. This work presents the development of a high-temperature creep test system for miniature specimens with in situ scanning electron microscope (SEM) testing capability for real-time characterization. Here, we discuss the challenges of the development of the system, such as gripping the samples, loading, heating, cooling mechanisms, and strain measurement. The equipment is used to investigate the creep behavior of FeCrAl alloy Kanthal APMT, and the results are compared with conventional creep test data from the same batch of this material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 379-390, October 21–24, 2019,
... of an arrested crack from a CFCG-test at 950 °C. The experiment was conducted using induction heating and the gauge length was observed during the test using a digital image correlation technique. By this combination, it can be shown that the Crack shown in Fig. 13a was not propagating anymore...
Abstract
View Paper
PDF
Cast nickel-based superalloys used as structural materials for gas turbine parts need to withstand high temperatures and dynamic mechanical loads. When in contact with ambient air, the formation of protective oxide scales causes a depletion of γ’-precipitates in the surface-near region and leaves a weakened microstructure. This environmentally based degradation of the material might be accelerated under cyclic thermal exposure. In this paper, the cyclic oxidation behavior of two cast nickel-based superalloys and one single crystalline variant are investigated: C1023, CM-247 LC and M-247 SX. Exposure tests were carried out under both isothermal and cyclic conditions in air at 850 °C, 950 °C and 1050 °C for times up to 120 h to investigate the impact of thermal cycling. The differences in oxidation mechanisms are analyzed phenomenologically via light and electron microscopy and brought in correlation with the oxidation kinetics, determined based on net mass change and depletion zone growth. An assessment of the impact of precipitation loss on local mechanical strength is attempted via nano-indentation method. The found relations can be transferred onto an acceleration of crack growth under creep-fatigue and thermo-mechanical fatigue conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, October 15–18, 2024,
.... All creep tests were conducted in the build direction (vertical) orientation. Post-Test Sample Preparation and Metallographic Examination Following creep testing, fracture surface images of each failed sample were captured using a digital Keyence VR-3200 large area measurement system equipped...
Abstract
View Paper
PDF
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 596-606, October 22–25, 2013,
... in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity...
Abstract
View Paper
PDF
Contrary to expectations, long-term performance of creep stress enhanced ferritic steels (CSEF) falls short of predictions based on short-term data. This discrepancy is attributed to the formation and growth of creep voids, leading to reduced ductility. This study investigates cavities in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity formation. Using a 3D “slice and view” technique with a focused ion beam/field emission gun scanning electron microscope (FIB-FEGSEM), the study revealed irregular shapes for both cavities and associated particles. Furthermore, analysis of the head-gauge transition area (lower stress exposure) showed small cavities near BN particles, suggesting preferential nucleation on these hard, irregular features. These findings strongly support the hypothesis that BN particles play a key role in cavity nucleation, impacting the long-term performance of P92 steel.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 23-38, October 15–18, 2024,
... of the art review on laser cladding process as an in-situ repair technique , Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 236, No. 3 (2022), pp. 1194 1215. [36] Yanis Balit et al. High resolution digital image correlation for microstructural...
Abstract
View Paper
PDF
This study examines the corrosion resistance of additively manufactured 316L stainless steel (SS) for nuclear applications across three environments: pressurized water reactor primary water (PWR PW), hot concentrated nitric acid, and seawater. Wire-feed laser additive manufacturing (WLAM) specimens showed oxidation behavior similar to wrought 316L SS in PWR PW, though stress corrosion cracking (SCC) susceptibility varied with heat treatment. In nitric acid testing, laser powder bed fusion (L-PBF) specimens demonstrated superior corrosion resistance compared to conventional SS, primarily due to improved intergranular corrosion resistance resulting from cleaner feedstock powder and rapid solidification rates that minimized grain boundary segregation. Laser metal deposition (LMD) repair studies in seawater environments successfully produced dense, crack-free repairs with good metallurgical bonding that matched the substrate’s mechanical properties while maintaining corrosion resistance. These results emphasize the importance of corrosion testing for additively manufactured components and understanding how their unique microstructures affect performance.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 900-911, October 11–14, 2016,
... in acetone at 40 oC for 20 min using an ultrasonic bath. The samples before and during 901 exposure were accurately weighed using digital balance with a resolution of m ± 0.01 mg for masses m = < 80 g. The balance was calibrated frequently using its internal calibration function and periodically with test...
Abstract
View Paper
PDF
The A-USC technology is still under development due to limited number of materials complying with the requirements of high creep strength and high performance in highly aggressive corrosion environments. Development of power plant in much higher temperatures than A-USC is currently impossible due to the materials limitation. Currently, nickel-based superalloys besides advanced austenitic steels are the viable candidates for some of the A-USC components in the boiler, turbine, and piping systems due to higher strength and improved corrosion resistance than standard ferritic or austenitic stainless steels. The paper, presents the study performed at 800 °C for 3000 hours on 3 advanced austenitic steels; 309S, 310S and HR3C with higher than 20 Cr wt% content and 4 Ni-based alloys including: two solid-solution strengthened alloys (Haynes 230), 617 alloy and two (γ’) gamma - prime strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray Diffractometer (XRD). Mass change data have been examined every 250 hours.
1