Skip Nav Destination
Close Modal
Search Results for
destructive techniques
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 44 Search Results for
destructive techniques
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
... B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations...
Abstract
View Paper
PDF
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1256-1267, October 22–25, 2013,
... Abstract Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam...
Abstract
View Paper
PDF
Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising results. Improvements on the measurement resolution have been practically demonstrated with oxides down to 65 μm thickness being measured successfully.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 137-148, October 11–14, 2016,
... in terms of creep life consumed. Those findings suggested that the creep life assessment of Ni-based alloys would be possible by means of hardness measurement. The paper also deals with the role and perspective development of non destructive damage detecting techniques, and life assessment issues on Ni...
Abstract
View Paper
PDF
The creep degradation/life assessment for high temperature critical component materials is absolutely needed to assure the long-term service operation and there is little experience with the service exposure of the high temperature components made of newly developed Ni-based alloys. In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys. As the result, it was found that the hardness was increased by not only precipitation due to thermal aging but also creep stress/strain, and there existed linear relationship between the applied stress and creep-induced hardness increase. Also the hardness scatter measured was increased along with the progress of creep hardening and damage progressing in terms of creep life consumed. Those findings suggested that the creep life assessment of Ni-based alloys would be possible by means of hardness measurement. The paper also deals with the role and perspective development of non destructive damage detecting techniques, and life assessment issues on Ni-based alloys for A-USC power applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
... because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum...
Abstract
View Paper
PDF
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... for a plant with 30 years of Service. Inspection Interval (Years) Damage Classification Wedel-Neubauer EPRI-APTECH Undamaged 5 27 A. Isolated Cavities 3 12 B. Oriented Cavities 1.5 5.4 C. Linked Cavities (Microcracks) 0.5 1.8 D. Macrocracks Repair Immediately Based on fracture mechanics Destructive Techniques...
Abstract
View Paper
PDF
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 960-972, October 22–25, 2013,
... martensitic 9-12%Cr steels are reviewed and compared. And also since the non-destructive creep life assessment techniques for the Type IV creep degradation and failure in high strength martensitic 9-12%Cr steel welds are not yet practically established and applied, a candidate way based on the hardness creep...
Abstract
View Paper
PDF
In order to improve thermal efficiency of fossil-fired power plants through increasing steam temperature and pressure high strength martensitic 9-12%Cr steels have extensively been used, and some power plants have experienced creep failure in high temperature welds after several years operations. The creep failure and degradation in welds of longitudinally seam-welded Cr- Mo steel pipes and Cr-Mo steel tubes of dissimilar metal welded joint after long-term service are also well known. The creep degradation in welds initiates as creep cavity formation under the multi-axial stress conditions. For the safety use of high temperature welds in power plant components, the complete understanding of the creep degradation and establishment of creep life assessment for the welds is essential. In this paper creep degradation and initiation mechanism in welds of Cr-Mo steels and high strength martensitic 9-12%Cr steels are reviewed and compared. And also since the non-destructive creep life assessment techniques for the Type IV creep degradation and failure in high strength martensitic 9-12%Cr steel welds are not yet practically established and applied, a candidate way based on the hardness creep life model developed by the authors would be demonstrated as well as the investigation results on the creep cavity formation behavior in the welds. Additionally from the aspect of safety issues on welds design an experimental approach to consider the weld joint influence factors (WJIF) would also be presented based on the creep rupture data of the large size cross-weld specimens and component welds.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
... Abstract High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing...
Abstract
View Paper
PDF
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 516-529, October 11–14, 2016,
.... Also to Shane Maskill for providing access to creep data and the test rigs for analysis. REFERENCES [1] G. Sposito, C. Ward, P. Cawley, P. B. Nagy, and C. Scruby, A review of non-destructive techniques for the detection of creep damage in power plant steels, NDT E Int., vol. 43, no. 7, pp. 555 567...
Abstract
View Paper
PDF
The impression creep test method using a rectangular indenter has been well established and the applicability of the technique has been supported by the test data for a number of metallic materials at different temperatures and stresses. The technique has proved to be particularly useful in providing material data for on-site creep strength assessments of power plant components operating in the creep regime. Due to these reasons, “standard” assessment procedures using the impression testing method are needed in order for the technique to be more widely used. This paper will first address some key issues related to the use of the impression creep test method, involving the data conversion method, typical test types and validity of the test technique etc. Then some recommendations on a number of practical aspects, such as the basic requirements of test rigs, “standard” specimen geometry, indenter dimensions, sampling procedures for scoop samples, specimen preparation, temperature and loading control, and displacement measurement, are briefly addressed. Finally, applications of the test data to assist with the risk management and life assessment programme of power plant components, particularly those with service-exposed materials, using data obtained from scoop samples, are described. Proposals for future exploitation and for improvement of the technique are addressed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, October 15–18, 2024,
... surfaces. Additionally, ash accumulates on the tube surfaces and reacts with sulfur components in the combustion gas, forming liquid sulfides on the tube surfaces, significantly increasing the corrosion rate, known as hot corrosion. 304 Development of Techniques and Devices for Measuring Boiler Tube Wall...
Abstract
View Paper
PDF
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
...-specs as Type II which sets stricter chemistry requirements for Grade 91 (9Cr-1Mo-V) material. The implications of chemical composition on the creep behavior and detectability of damage using non-destructive phased array techniques in Grade 91 cross-welds is deliberated in the discussion section...
Abstract
View Paper
PDF
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 554-570, August 31–September 3, 2010,
... determine if T91 steel achieves the necessary microstructure and properties for service. Additionally, rejected parts can be assessed for microstructural issues causing unacceptable properties. The techniques utilize a common electronic setup with different sensors, requiring calibration for specific NDE...
Abstract
View Paper
PDF
Critical sections of steam plants and heat-recovery steam generators require materials with enhanced properties such as 9Cr-1Mo steel. Ensuring compliance with specifications for heat treatment, chemical composition, contamination limits, and joint design is crucial to prevent premature failures. This study describes the development of a user-friendly, multi-property nondestructive sensor arrangement to qualify heat-treated 9Cr-1Mo steel. Experimental results demonstrate that correlations between thermal heat treatment and electronic, magnetic, and elastic measurements can determine if T91 steel achieves the necessary microstructure and properties for service. Additionally, rejected parts can be assessed for microstructural issues causing unacceptable properties. The techniques utilize a common electronic setup with different sensors, requiring calibration for specific NDE systems and sensor setups, high-speed data acquisition, and frequency analysis (FFT). Further development on crept and welded samples is recommended to enhance NDE practices for in-service T91 steel conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1090-1097, October 21–24, 2019,
... on the described butt welds started at the tube s inner surface and were therefore not detectable by penetration testing (PT) or similar non-destructive techniques. Since at the time no other SRC damages had been known or reported for the described 25% Chromium stainless tubes, additional investigations were...
Abstract
View Paper
PDF
In a European ultra-supercritical (USC) power station repaired reheater bundle tubes made out of 25% Chromium stainless steels developed stress relief damages at the tube-to-tube butt welds, leading to leakages after only 8.500 hours of operation. Laboratory investigations of the leakages revealed common features of stress relief cracking (SRC) such as highly localized intergranular cracking in the heat affected zone (HAZ) near the fusion line, creep void formation at the crack tip and around the crack. At that time no other SRC damages were known for the employed 25% Chromium stainless steel boiler tubes. This article briefly describes the SRC damage found on the repaired reheater bundle tubes. It further provides insight on the several laboratory tests employed to assess the SRC behavior of welded joints of different creep resistant stainless steels. Among the selected test methods were Slow-Strain-Rate-Tests (SSRT), static 3-point bending tests derived from the Van Wortel approach and component tests. The results provided by the described tests methods have shown that the SRC behavior of a given material combination must be assessed by different techniques. This is especially the case for the evaluation of potential countermeasures and for the determination of the service conditions leading to the highest susceptibility.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1314-1321, October 21–24, 2019,
...-destructive inspections applicable to actual plants. This paper investigates nucleation and growth behavior of Laves phase precipitation in high chromium steels associated with thermal aging. Selective dissolution technique to detect and evaluates Laves phase is of concerns and variation of electrochemical...
Abstract
View Paper
PDF
The nucleation and growth of precipitates such as Laves phases, carbides and nitrides reduce fracture toughness and high-temperature strength of high chromium steels used in thermal power plants. For this reason, to ensure a long-term plant reliability, it is important to estimate material deterioration by aging. The study presented in this paper involves micro structural evolution by thermal aging of COST-E, F, and FB2 steels, all turbine materials. The results indicate that the Laves phases and other precipitates can be separately detected and quantified by the electrochemical technique. The results also clarify the correlation between the amount of Laves phases precipitated and electrochemical polarization parameters.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 53-59, October 22–25, 2013,
... developmental tasks will be undertaken, including development of end covers, establishment of circumferential seam welding procedures between end cover and pipe, establishment of fillet welding process for stub to pipe 57 welding and establishment of advanced ultrasonic testing techniques for the detection...
Abstract
View Paper
PDF
India's current installed power generating capacity is about 225,000 MW, of which about 59% is coal based. It is projected that India would require an installed capacity of over 800,000 MW by 2032. Coal is likely to remain the predominant source of energy in India till the middle of the century. India is also committed to reducing the CO 2 emission intensity of its economy and has drawn up a National Action Plan for Climate Change, which, inter alia, lays emphasis on the deployment of clean coal technologies. With this backdrop, a National Mission for the Development of Advanced Ultra Supercritical Technology has been initiated. The Mission objectives include development of advanced high temperature materials, manufacturing technologies and design of equipment. A corrosion test loop in an existing plant is also proposed. Based on the technology developed, an 800 MW Demonstration A-USC plant will be established. Steam parameters of 310 kg/cm 2 , 710 °C / 720 °C have been selected. Work on selection of materials, manufacture of tubes, welding trials and design of components has been initiated. The paper gives details of India's A-USC program and the progress achieved.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 183-194, October 15–18, 2024,
... Abstract As part of a Department of Energy (DOE) funded program assessing advanced manufacturing techniques for Small Modular Reactor (SMR) applications, the Nuclear Advanced Manufacturing Research Centre (AMRC) and the Electric Power Research Institute (EPRI) have been developing Electron Beam...
Abstract
View Paper
PDF
As part of a Department of Energy (DOE) funded program assessing advanced manufacturing techniques for Small Modular Reactor (SMR) applications, the Nuclear Advanced Manufacturing Research Centre (AMRC) and the Electric Power Research Institute (EPRI) have been developing Electron Beam Welding (EBW) parameters and procedures based upon SA508 Grade 3 Class 1 base material. The transition shell, a complex component connecting the lower assembly to the upper assembly is a shell that flares up with varying thicknesses across its section. The component due to its geometry could be built by near net shape powder metallurgy hot isostatic pressing instead of conventional forging techniques. The demonstrator transition shell here is built from several sub-forging as a training exercise. The complex geometry and joint configuration were selected to assess the EBW as a suitable technique. This paper presents results from the steady state welding in the 60-110 mm material thickness range, showing that weld properties meet specification requirements. Weld quality was assured by Time-of-Flight Diffraction (ToFD). The transition shell was completed by welding a flange to the assembly. The presented transition shell assembly represents 6 welded sections all fabricated in below 100 min total welding time.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 9-23, October 22–25, 2013,
... testing basic investigations have been done to characterize the aged material. Complimentary to COMTES700 different heat treatments (pre-/post-) will be applied and a trial weld of each material combination and/or welding method will be tested destructively. Trial welds will be carried out and all those...
Abstract
View Paper
PDF
ENCIO (European Network for Component Integration and Optimization) is a European project aiming at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving environmental and economic sustainability of coal fired power plants and achieving successful deployment of carbon capture and storage technologies. The ENCIO-project is financed by industrial and public funds. The project receives funding from the European Community's Research Fund for Coal and Steel (RFCS) under grant agreement n° RFCPCT-2011-00003. The ENCIO started on 1 July 2011. The overall project duration is six years (72 months), to allow enough operating hours, as well as related data collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops are planned for 20.000 hours of operation at 700°C. The present paper summarizes the current status of the overall process design of the thick-walled components, the test loops and the scheduled operating conditions, the characterizations program for the base materials and the welded joints, like creep and microstructural analysis also after service exposure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1182-1193, October 11–14, 2016,
... is demonstrated in selected figures below. Hardness tests Hardness measurement is one of the few low cost non-destructive evaluation techniques which may provide an indication of the heat treated condition of a material. Test coupons were subjected to a cross weld section matrix hardness measurement to determine...
Abstract
View Paper
PDF
There is a constant need for improved knowledge of the influence of non-standard processing on the expected performance of creep strength enhanced ferritic (CSEF) materials as the total installed tonnage of these materials is rapidly increasing across the power generation industry. Cr-Mo-V steel grades micro-alloyed with niobium and titanium designed for pressurized equipment operating in the supercritical steam range proved to be very sensitive to relative minor variations in the principal heat treatment parameters time and temperature, when compared to the traditional Cr-Mo-V grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance, it is therefore of significant importance to have a good understanding of actual material properties for effective operation and plant life studies. This study investigated the effect and impact variations of post weld heat treatment time and temperature on mechanical properties of tungsten inert gas (TIG) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify welds suspected to have received non-standard PWHT cycles on Grade 91 pipework systems.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 397-408, October 15–18, 2024,
... to welding. Some of the samples had what appear to be small lamination defects in them. One irradiated welded sample has been tested to date with no cracking detected, which has been confirmed by destructive examination. austenitic stainless steel cracking grain boundaries heat-affected zone nickel...
Abstract
View Paper
PDF
Nuclear reactor inspections occasionally identify degraded materials in irradiated reactor components. Although mechanical repair options are possible, these repair solutions may be cost prohibitive or impractical to implement due to access restraints and/or the severity of the degradation. Welding repair of reactor components may input excessive heat into these irradiated materials resulting in diffusion of trace amounts of helium within the grain boundaries of the weld heat-affected zone (HAZ). Intergranular HAZ cracking can then result from the combination of this helium diffusion and high localized tensile stresses generated during weld cooling. It is therefore critical to characterize these zones and understand limitations for welding highly irradiated components to prevent helium-induced cracking. To accomplish this, typical reactor structural materials including Types 304L and 316L stainless steels and nickel-based Alloy 600/182 materials irradiated within the High Flux Isotope Reactor facility at Oak Ridge National Laboratory were used in this study for welding and evaluation. A phased array ultrasonic inspection system has been developed to characterize cracking in the weld samples. It provides remote controlled scanning and minimizes handling the samples, minimizing operator dose. The samples are inspected from the side opposite of the welds. The material and weld grain noise were evaluated at 10 MHz and found to be conducive to detecting cracking in the material and welds. Inspection of the samples comprises a 10 MHz phased array probe sweeping a focused longitudinal wave from -60° to 60° while the probe is raster scanned over the sample in small increments. The collected data is analyzed using UltraVision 3. Several of the irradiated samples were inspected prior to welding. Some of the samples had what appear to be small lamination defects in them. One irradiated welded sample has been tested to date with no cracking detected, which has been confirmed by destructive examination.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 393-407, August 31–September 3, 2010,
... no inspection challenges to the ultrasonic inspection process. Similar studies using these standard non-destructive evaluation (NDE) techniques on cast 316 stainless steel have shown the material to be un-inspectable. 401 Weldability Another factor that was considered paramount for consideration of components...
Abstract
View Paper
PDF
The manufacture of large, complex components for ultra-supercritical and oxy-combustion applications will be extremely costly for industry over the next few decades as many of these components will be manufactured from expensive, high strength, nickel-based alloys casting and forgings. The current feasibility study investigates the use of an alternative manufacturing method, powder metallurgy and hot isostatic processing (PM/HIP), to produce high quality, and potentially less expensive components for power generation applications. Benefits of the process include manufacture of components to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... EXPERIENCE ON USC BOILERS For the thick wall components, the welding process is a key technique in boiler fabrication. Narrow gap HST welding technology developed by Babcock-Hitachi K.K., is widely used for thick wall boiler headers and piping of high alloy steels in both of our workshop and erection sites...
Abstract
View Paper
PDF
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
1