Skip Nav Destination
Close Modal
Search Results for
design criteria
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 76
Search Results for design criteria
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 733-747, October 3–5, 2007,
... Abstract This paper examines elevated-temperature materials behavior through two perspectives: that of component designers/stress analysts and developers of elevated-temperature design criteria. It explores challenges in design and structural integrity evaluation, focusing on how elevated...
Abstract
View Papertitled, A <span class="search-highlight">Design</span> Perspective of Elevated Temperature Material Behavior
View
PDF
for content titled, A <span class="search-highlight">Design</span> Perspective of Elevated Temperature Material Behavior
This paper examines elevated-temperature materials behavior through two perspectives: that of component designers/stress analysts and developers of elevated-temperature design criteria. It explores challenges in design and structural integrity evaluation, focusing on how elevated temperature design criteria originally developed for nuclear components can be adapted for non-nuclear power and petrochemical applications, particularly those under cyclic loading conditions. A central challenge lies in extrapolating from limited specimen data—gathered under specific time periods, loading conditions, and geometries—to predict behavior in complex structures subjected to variable short-term and long-term loading patterns. The paper concludes by proposing a pathway for developing elevated-temperature design criteria specifically for power and petrochemical plant components operating cyclically in the creep regime.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 872-885, August 31–September 3, 2010,
...-resistance, and weldability has led to the development of cast analogs of wrought nickel-based superalloys, including H263, H282, and N105. This paper examines the alloy design criteria, processing experiences, as-processed and heat-treated microstructures, and selected mechanical properties...
Abstract
View Papertitled, Processing of Advanced Alloys for A-USC Steam Turbine Applications
View
PDF
for content titled, Processing of Advanced Alloys for A-USC Steam Turbine Applications
As conventional coal-fired power plants seek to reduce greenhouse gas emissions by increasing efficiency, the temperature limitations of traditional ferritic/martensitic steels used in high-temperature components present a significant challenge. With Advanced Ultra Supercritical (A-USC) power plants proposing steam temperatures of 760°C, attention has turned to nickel-based superalloys as potential replacements, since ferritic/martensitic steels cannot withstand such extreme conditions. However, the current absence of cast nickel-based superalloys combining high strength, creep-resistance, and weldability has led to the development of cast analogs of wrought nickel-based superalloys, including H263, H282, and N105. This paper examines the alloy design criteria, processing experiences, as-processed and heat-treated microstructures, and selected mechanical properties of these materials while also discussing their potential for full-scale development.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 247-255, October 25–28, 2004,
... Abstract Components in ultrasupercritical steam (USC) boilers will operate under significantly more severe conditions than current subcritical and supercritical steam boilers. Existing construction rules for power boilers lack design guidance or criteria to assess the adequacy of designs...
Abstract
View Papertitled, Experimental Work to Validate Alternate <span class="search-highlight">Design</span> Methodologies for USC Steam Boiler Components
View
PDF
for content titled, Experimental Work to Validate Alternate <span class="search-highlight">Design</span> Methodologies for USC Steam Boiler Components
Components in ultrasupercritical steam (USC) boilers will operate under significantly more severe conditions than current subcritical and supercritical steam boilers. Existing construction rules for power boilers lack design guidance or criteria to assess the adequacy of designs for USC conditions. A Department of Energy (DOE) project addresses this by evaluating advanced materials under conditions similar to potential USC service environments. The project focuses on six tubing alloys and four thick-section alloys. Testing is underway for pressurized tube bends, notched thick-section bars, fatigue, and thermal shock on thick-section tubing made of materials like CCA617, Alloy 230, and Alloy 740. Further testing is planned for pressurized tubes, dissimilar metal welds, and thick-section weldments. This paper summarizes the status of this initial testing program aimed at enabling USC boiler material qualification.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... Abstract In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life...
Abstract
View Papertitled, Defect Tolerant <span class="search-highlight">Design</span> Concepts Applied to Remaining Life Assessments of Steam Turbines and Weld Repairs of Power Generation Equipment
View
PDF
for content titled, Defect Tolerant <span class="search-highlight">Design</span> Concepts Applied to Remaining Life Assessments of Steam Turbines and Weld Repairs of Power Generation Equipment
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design...
Abstract
View Papertitled, Material and <span class="search-highlight">Design</span> Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and <span class="search-highlight">Design</span> Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 59-81, October 3–5, 2007,
... Abstract This paper describes the steps necessary for consideration of weld behavior in order to be used in modern design procedures. Specific behavior of similar and dissimilar welds in the creep regime are described as well as procedures and criteria to be used for the assessment of welded...
Abstract
View Papertitled, Consideration of Weld Behavior in <span class="search-highlight">Design</span> of High Temperature Components
View
PDF
for content titled, Consideration of Weld Behavior in <span class="search-highlight">Design</span> of High Temperature Components
This paper describes the steps necessary for consideration of weld behavior in order to be used in modern design procedures. Specific behavior of similar and dissimilar welds in the creep regime are described as well as procedures and criteria to be used for the assessment of welded joints.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, February 25–28, 2025,
... Abstract Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible...
Abstract
View Papertitled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
View
PDF
for content titled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 632-643, October 11–14, 2016,
... and then applied to the membrane wall configurations. advanced ultrasupercritical boilers bimetallic tubes design criteria heat transfer high-temperature sections membrane walls post weld heat treatment weld overlays Advances in Materials Technology for Fossil Power Plants Proceedings from...
Abstract
View Papertitled, Alternate Analytical Methodology to ASME Section I <span class="search-highlight">Design</span> for Membrane Walls with Bimetallic Tube for High Temperature Sections of Advanced Ultrasupercritical (AUSC) Boilers
View
PDF
for content titled, Alternate Analytical Methodology to ASME Section I <span class="search-highlight">Design</span> for Membrane Walls with Bimetallic Tube for High Temperature Sections of Advanced Ultrasupercritical (AUSC) Boilers
High temperature regions in the upper sections of the advanced ultrasupercritical (AUSC) boilers are exposed to temperatures higher than traditional supercritical (SC) boilers and require high strength materials. Use of modified 9-12% Cr materials such as T91 and T92, while meeting the strength requirements, are still under research stage for large-scale fabrication of the membrane walls for several reasons, such as required post weld heat treatment PWHT (ASME Code) or hardness limits on as-welded structures (European codes). The main objective of this paper is to explore alternate tubing materials that do not require a PWHT in the high temperature sections of the AUSC boiler membrane walls. Composite bimetallic tubing with high strength cladding, applied by weld overlay or co-extrusion that may meet the requirement of high operating temperature and high overall strength, is addressed through an alternate design criterion. Bimetallic tubes can replace the single metal tubes made from 9-12% Cr materials. The bimetallic tube is assumed to be fabricated from Grade 23 steel (base tubes) with Alloy 617 overlaid. The alternate design method is based on an iterative analytical solution for the through-wall heat transfer and stresses in a composite tube with temperatures and strength variations of both the materials considered in detail. A number of different analyses were performed using the proposed analytical approach, methodology verified through benchmark solutions and then applied to the membrane wall configurations.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... criteria (to be explained in the next section) are indicated in Fig. 1. Figure 1 Alloy design strategy and criteria evaluation of high strength austenitic heat resistant steels. 2.3 Defining the go/no-go criteria For MX carbonitride precipitation strengthened steels, the size, density and spatial...
Abstract
View Papertitled, A Computational <span class="search-highlight">Design</span> Study of Novel Creep Resistant Steels for Fossil Fuel Power
View
PDF
for content titled, A Computational <span class="search-highlight">Design</span> Study of Novel Creep Resistant Steels for Fossil Fuel Power
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 35-46, October 11–14, 2016,
..., alloy 263 and 282 were prone to. Figure 5 demonstrates the stress rupture properties of alloy G130. It is generally agreed that the creep design criteria for the A-USC plant is 100,000hrs life, with a stress of 80 to 100MPa and temperature of 700 C. Figure 6 shows that alloy G130 easily meets...
Abstract
View Papertitled, Next Generation Casting Materials for Fossil Power Plants
View
PDF
for content titled, Next Generation Casting Materials for Fossil Power Plants
The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant operation of up to 700°C and maybe 750°C. This paper discusses the production of prototype MarBN steel castings for potential plant operation up to 650°C, and gamma prime strengthened nickel alloys for advanced super critical plant (A-USC) operation up to 750°C. MarBN steel is a modified 9% Cr steel with chemical concentration of Cobalt and tungsten higher than that of CB2 (GX-13CrMoCoVNbNB9) typically, 2% to 3 Co, 3%W, with controlled B and N additions. The paper will discuss the work undertaken on prototype MarBN steel castings produced in UK funded research projects, and summarise the results achieved. Additionally, within European projects a castable nickel based super alloy has successfully been developed. This innovative alloy is suitable for 700°C+ operation and offers a solution to many of the issues associated with casting precipitation hardened nickel alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 517-527, February 25–28, 2025,
... by balancing fluctuating regenerative power sources (like wind and solar) [1]. For example, traditional criteria in the design of structural steels for power plants included an expected lifespan of approximately 200,000 hours, including some 200 hot starts (defined for example by less than 8 hours of idle time...
Abstract
View Papertitled, Fatigue Properties of High-Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, Fatigue Properties of High-Performance Ferritic (HiperFer) Steels
High-performance Ferritic (HiperFer) steels represent a promising materials innovation for next-generation thermal energy conversion systems, particularly in cyclically operating applications like concentrating solar thermal plants and heat storage power plants (Carnot batteries), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making them potentially transformative for future energy technologies. This paper examines the microstructural mechanisms underlying HiperFer’s enhanced fatigue resistance in both short and long crack propagation, while also presenting current findings on salt corrosion properties and exploring potential alloying improvements for fusion reactor applications, highlighting the broad technical relevance of these innovative materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, February 25–28, 2025,
... welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed...
Abstract
View Papertitled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
View
PDF
for content titled, Evaluation of the Mechanical Properties of Cast and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, February 25–28, 2025,
... for the employment of an induction coil was to incorporate a viewing window for the digital image correlation system. The coil design criteria followed a couple of guidelines: 1) produce a uniform temperature profile across the entire specimen, 2) incorporate a viewing window for image acquisition, and 3) provide...
Abstract
View Papertitled, Influence of Solution Annealing on Creep Behavior of Additively Manufactured 316H SS Using Microstructurally Graded Specimen
View
PDF
for content titled, Influence of Solution Annealing on Creep Behavior of Additively Manufactured 316H SS Using Microstructurally Graded Specimen
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 718-732, October 3–5, 2007,
... rate have been correlated using the fracture mechanics parameter C*. The applicability of the stress intensity factor K I to describe the creep crack behavior is also being assessed. A modified Two-Criteria-Diagram was applied and adapted in order to recalculate crack initiation times under creep...
Abstract
View Papertitled, Long-Term Crack Behavior under Creep and Creep-Fatigue Conditions of Heat Resistant Steels
View
PDF
for content titled, Long-Term Crack Behavior under Creep and Creep-Fatigue Conditions of Heat Resistant Steels
High temperature components with notches, defects and flaws may be subject to crack initiation and crack propagation under long-term service conditions. To study these problems and to support an advanced remnant life evaluation, fracture mechanics procedures are required. Since a more flexible service mode of power plants causes more start up and shut down events as well as variable loading conditions, creep-fatigue crack behavior becomes more and more decisive for life assessment and integrity of such components. For steam power plant forged and cast components, the crack initiation time and crack growth rate of heat resistant steels were determined in long-term regime up to 600 °C. Component-like double edge notched tension specimens have been examined. The results are compared to those obtained using the standard compact tension specimen. Crack initiation time and crack growth rate have been correlated using the fracture mechanics parameter C*. The applicability of the stress intensity factor K I to describe the creep crack behavior is also being assessed. A modified Two-Criteria-Diagram was applied and adapted in order to recalculate crack initiation times under creep-fatigue conditions. Recommendations are given to support the use of different fracture mechanics parameters in order to describe the long-term crack behavior under creep and/or creep-fatigue conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 373-383, February 25–28, 2025,
... of operation and is designed to enhance TSC shell CISCC resistance during the period of extended operation [2]. A completed Cold Spray application to a TSC is shown below in Fig. 1. Figure 1 Completed TSC Cold Spray 374 NAC is providing 19 of its uniquely designed cask storage systems to CPCCo for dry...
Abstract
View Papertitled, Cold Spray Application onto Stainless Steel Dry Cask Storage Canisters
View
PDF
for content titled, Cold Spray Application onto Stainless Steel Dry Cask Storage Canisters
NAC International Inc. (NAC) is providing transportable storage canisters (TSCs) to Central Plateau Cleanup Company CPCCo) for long term dry storage of capsulized radioactive waste at the Hanford Site in Richland, WA. The TSC consists of 316/316L stainless-steel components welded to form a cylindrical canister that acts as a confinement boundary for the payload. The heat affected zones of the welded areas are most susceptible to Chloride Induced Stress Corrosion Cracking (CISCC), that may limit the life of the TSC. To mitigate CISCC during the anticipated 300-year storage period, an overcoating is applied to the heat affected zones of all external TSC fabrication welds, referred to as Cold Spray. This paper will discuss the purpose, development, and application of Cold Spray to the CPCCo TSCs. Cold Spray is a process whereby metal powder particles are deposited upon a substrate by means of ballistic impingement via a high-velocity stream of gas, resulting in a uniform deposition with minimal porosity and high bond strength. Temperatures are below the melting thresholds of many engineering materials enabling a large variety of application uses. NAC developed a process for Cold Spray application onto the 316/316L stainless-steel TSCs to serve as a CISCC protective/mitigative coating for its canister products. Testing during development arrived at nickel as the deposited coating material and nitrogen as the gas vehicle, along with a set of various application parameters. The qualified process was implemented onto the CPCCo TSCs. Prior to application, the equipment and process are validated via coupons that are sprayed and then tested to meet requirements for adhesion strength (ASTM C633) and porosity (ASTM E2109). After successful coupon testing, Cold Spray is performed on the external TSC fabrication welds, to include heat affected zones. Acceptance testing of the resulting deposition is performed via visual inspection.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1204-1214, October 21–24, 2019,
... efficiency of 46%HHV (higher heating value) or more can be expected. A-USC has the same system configuration as existing coal-fired thermal power plants, so it can be easily used as a replacement for aging thermal power plants. 1204 A-USC STEAM TURBINE CONCEPTUAL DESIGN AND MATERIAL NEEDS Figure 1 shows...
Abstract
View Papertitled, Development of Steam Turbine for A-USC Plant
View
PDF
for content titled, Development of Steam Turbine for A-USC Plant
Enhancement of the steam conditions is one of the most effective measures to achieve the goal of higher thermal efficiency. 700°C class A-USC (Advanced Ultra Super Critical Steam Conditions) power plant is one of the remarkable technologies to achieve the goal and reduce CO 2 emissions from fossil fuel power plants. Toshiba has been working on the A-USC development project with subsidy from METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). In this project, A-USC power plants with steam parameters of 35MPa 700/720/720°C were considered. To date, various materials have been developed and tested to verify their characteristics for use in A-USC power plants. And some of these materials are being investigated as to their suitability for use in long term. Together with members of the project, we carried out the boiler component test using a commercially-operating boiler. We manufactured a small-scale turbine casing made of nickel-based alloy, and supplied it for the test. In addition, we manufactured a turbine rotor for turbine rotation tests, and carried out the test at 700°C and rotating speed of 3,600rpm conditions. In this paper, we show the results of the A-USC steam turbine development obtained by the project.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 82-91, October 3–5, 2007,
... electricity. In addition to reducing CO 2 , these advanced systems will have to achieve near-zero emissions of criteria pollutants (SO 2 , NO X , and filterable and condensable particulate) and hazardous air pollutants such as mercury. carbon dioxide hazardous air pollutants mercury ultra...
Abstract
View Papertitled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
View
PDF
for content titled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
UltraGen is an initiative proposed by EPRI to accelerate the deployment and commercialization of clean, efficient, ultra-supercritical pulverized coal (USC PC) power plants that are capable of meeting any future CO 2 emissions regulations while still generating competitively-priced electricity. In addition to reducing CO 2 , these advanced systems will have to achieve near-zero emissions of criteria pollutants (SO 2 , NO X , and filterable and condensable particulate) and hazardous air pollutants such as mercury.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 554-570, August 31–September 3, 2010,
... give an indication about the sample history. Magnetic Barkhausen Noise (MBN) signals can be used for assessment of microstructural state. Various approaches are introduced, with design criteria in mind, to balance the most convenient field practice with sufficient resolution to be able to determine...
Abstract
View Papertitled, Nondestructive Evaluation Methods of Microstructure in Power Plant Steel Grades
View
PDF
for content titled, Nondestructive Evaluation Methods of Microstructure in Power Plant Steel Grades
Critical sections of steam plants and heat-recovery steam generators require materials with enhanced properties such as 9Cr-1Mo steel. Ensuring compliance with specifications for heat treatment, chemical composition, contamination limits, and joint design is crucial to prevent premature failures. This study describes the development of a user-friendly, multi-property nondestructive sensor arrangement to qualify heat-treated 9Cr-1Mo steel. Experimental results demonstrate that correlations between thermal heat treatment and electronic, magnetic, and elastic measurements can determine if T91 steel achieves the necessary microstructure and properties for service. Additionally, rejected parts can be assessed for microstructural issues causing unacceptable properties. The techniques utilize a common electronic setup with different sensors, requiring calibration for specific NDE systems and sensor setups, high-speed data acquisition, and frequency analysis (FFT). Further development on crept and welded samples is recommended to enhance NDE practices for in-service T91 steel conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 984-993, February 25–28, 2025,
... to be an unsuitable criterion for quantifying DRX in multipass Ni-Cr fusion welds. Based on the observed criteria, higher IMERT regions correlate to smaller grain surface area, larger grain boundary density, and higher grain aspect ratio, which are all symptoms of DRX. High IMERT has a strong correlation...
Abstract
View Papertitled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium Nickel Alloy Groove Welds
View
PDF
for content titled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium Nickel Alloy Groove Welds
Ductility dip cracking (DDC) is known to occur in highly restrained welds and structural overlays made using high chromium (Cr) nickel (Ni) based filler metals in the nuclear power generation industry, resulting in costly repairs and reworks. Previous work explored the role of mechanical energy imposed by the thermo-mechanical cycle of multipass welding on DDC formation in a highly restrained Alloy 52 filler metal weld. It was hypothesized that imposed mechanical energy (IME) in the recrystallization temperature range would induce dynamic recrystallization (DRX), which is known to mitigate DDC formation. It was not shown however that IME in the recrystallization temperature range (IMERT) induced DRX. The objective of the work is to discern if a relationship between IMERT and DRX exists and quantify the amount of DRX observed in a filler metal 52 (FM-52) groove weld. DRX was analyzed and quantified using electron beam scattered diffraction (EBSD) generated inverse poll figures (IPF), grain surface area and grain aspect ratio distribution, grain orientation spread (GOS), kernel average misorientation (KAM), and grain boundary (GB) length density. From the analysis, GOS was determined to be an unsuitable criterion for quantifying DRX in multipass Ni-Cr fusion welds. Based on the observed criteria, higher IMERT regions correlate to smaller grain surface area, larger grain boundary density, and higher grain aspect ratio, which are all symptoms of DRX. High IMERT has a strong correlation with the symptoms DRX, but due to the lack of observable DRX, creating a threshold for DRX grain size, grain aspect ratio, and GB density is not possible. Future work will aim to optimize characterization criteria based on a Ni-Cr weld with large presence of DRX.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 735-749, February 25–28, 2025,
... material specification as the acceptance criteria. In addition a high temperature tensile specimen must be tested at or above the design temperature and meet the requirements listed in Section II, part D for the chosen material. This is to ensure that the tensile and strength at the design temperature...
Abstract
View Papertitled, Weld Metal Additive Manufacturing for Grade 91
View
PDF
for content titled, Weld Metal Additive Manufacturing for Grade 91
This study investigates a novel approach to addressing the persistent Type IV cracking issue in Grade 91 steel weldments, which has remained problematic despite decades of service history and various mitigation attempts through chemical composition and procedural modifications. Rather than further attempting to prevent heat-affected zone (HAZ) softening, we propose eliminating the vulnerable base metal entirely by replacing critical sections with additively manufactured (AM) weld metal deposits using ASME SFA “B91” consumables. The approach employs weld metal designed for stress-relieved conditions rather than traditional normalizing and tempering treatments. Our findings demonstrate that the reheat cycles during AM buildup do not produce the substantial softening characteristic of Type IV zones, thereby reducing the risk of premature creep failure. The study presents comprehensive properties of the AM-built weld metal after post-weld heat treatment (PWHT), examines factors influencing deposit quality and performance, and explores the practical benefits for procurement and field construction, supported by in-service data and application cases.
1