Skip Nav Destination
Close Modal
Search Results for
damage tolerance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 39
Search Results for damage tolerance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 830-842, February 25–28, 2025,
... resistance and long-term microstructural stability, making it a viable alternative to stainless steels at elevated steam temperatures. The creep damage tolerance of T115 has been recently validated under ASME BPVC CC 3048 guidelines, which address safety concerns related to creep damage in boiler components...
Abstract
View Papertitled, Updated Evaluation of Creep <span class="search-highlight">Damage</span> <span class="search-highlight">Tolerance</span> in THOR 115 Parent Material and Weldments
View
PDF
for content titled, Updated Evaluation of Creep <span class="search-highlight">Damage</span> <span class="search-highlight">Tolerance</span> in THOR 115 Parent Material and Weldments
Tenaris' High Oxidation Resistance (THOR) 115, or T115, is a creep strength-enhanced ferritic (CSEF) steel introduced in the past decade. It is widely used in constructing high-efficiency power plants and heat recovery steam generators (HRSGs) due to its superior steam oxidation resistance and long-term microstructural stability, making it a viable alternative to stainless steels at elevated steam temperatures. The creep damage tolerance of T115 has been recently validated under ASME BPVC CC 3048 guidelines, which address safety concerns related to creep damage in boiler components. Testing confirmed T115's consistent creep damage-tolerant behavior, with cross-weld creep behavior reassessed through extensive metallographic examination of specimens from a 1.5-inch thick pipe girth weld, providing insights into creep damage distribution and hardness, and its relative performance compared to Grade 91 CSEF steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
.... In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat...
Abstract
View Papertitled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep <span class="search-highlight">Damage</span>
View
PDF
for content titled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep <span class="search-highlight">Damage</span>
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
... interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods...
Abstract
View Papertitled, Component Relevant Creep <span class="search-highlight">Damage</span> in Tempered Martensitic 9 to 12 %Cr Steels
View
PDF
for content titled, Component Relevant Creep <span class="search-highlight">Damage</span> in Tempered Martensitic 9 to 12 %Cr Steels
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
... in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material. creep cavity nucleation...
Abstract
View Papertitled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
View
PDF
for content titled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 623-634, February 25–28, 2025,
... reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1...
Abstract
View Papertitled, Improvements in Creep Ductility of the UK Cast MarBN Steel, IBN-1
View
PDF
for content titled, Improvements in Creep Ductility of the UK Cast MarBN Steel, IBN-1
MarBN steels, originally developed by Professor Fujio Abe at NIMS Japan, have undergone significant advancement in the UK through a series of government-funded collaborative projects (IMPACT, IMPEL, INMAP, IMPULSE, and IMPLANT). These initiatives have achieved several major milestones, including operational power plant trials, full-scale extruded pipe production, matching welding consumable development, and most notably, the creation of IBN-1—a new steel demonstrating 30-45% higher creep strength than Grade 92. However, like other creep strength-enhanced ferritic steels, IBN-1 shows reduced creep ductility under the lower stress conditions typical of operational use. Since adequate creep ductility is essential for component damage tolerance and effective in-service monitoring, this study investigates the effects of an alternative normalizing and tempering heat treatment on cast IBN-1. The research presents creep rupture test results showing improved ductility and analyzes the microstructural mechanisms responsible for this enhancement.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 873-884, February 25–28, 2025,
... Creep ductility, or more specifically creep damage tolerance, has long been recognized as an important parameter to indicate the ability of a material to perform in a so-called "ductile" manner in a structure operating under creep conditions. Creep analyses for various components [2, 3] demonstrated...
Abstract
View Papertitled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part I, Structural Response
View
PDF
for content titled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part I, Structural Response
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of simple Design by Formula rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. The metallurgical findings from the selected tests are the focus of the Part II paper. The association of performance with notch geometry, weld strength, and other potential contributing factors will be highlighted with a primary objective of informing the reader of the variability, and heat-specific behavior that is observed among this class of alloys widely used in modern thermal fleet components and systems.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 316-327, February 25–28, 2025,
... run, repair, or replace decisions. While there are numerous studies that report the creep crack growth behavior of grade 91, most of these are for heats that are creep damage tolerant and hence may not be applicable to assessment of heats that are creep damage susceptible. To fill this gap, this paper...
Abstract
View Papertitled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
View
PDF
for content titled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
This research compares creep crack growth behavior of two heats of creep strength enhanced ferritic (CSEF) steel, grade 91. These heats represent extremes of creep damage susceptibility, one heat exhibiting low creep ductility and the other high creep ductility. Creep crack growth tests were performed with compact tension specimens and were monitored with direct current potential drop and optical surface measurements. Load line displacement was measured throughout the duration of the tests. Specimens were sectioned, mounted, and analyzed using optical and scanning electron microscopy to assess the presence of oxidation, micro-cracking, creep damage, and void density. Tests were performed over a range of initial stress intensities on the low ductility material to investigate the impact of creep ductility. Metallurgical evidence and test data for each crack growth test was assessed to evaluate crack growth behavior linked to creep crack growth parameter (C*) and stress/creep damage distribution in the vicinity of the crack.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms...
Abstract
View Papertitled, Defect <span class="search-highlight">Tolerant</span> Design Concepts Applied to Remaining Life Assessments of Steam Turbines and Weld Repairs of Power Generation Equipment
View
PDF
for content titled, Defect <span class="search-highlight">Tolerant</span> Design Concepts Applied to Remaining Life Assessments of Steam Turbines and Weld Repairs of Power Generation Equipment
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 612-622, February 25–28, 2025,
... incorporated in applicable ASTM product standards (such as A213 [13 and continues to be evaluated by EPRI and other organizations today. More recently, the ASME BPVC has introduced rules to identify CSEF steel heats as either creep damage tolerant or intolerant in Code Case 3048 and the guidance given...
Abstract
View Papertitled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of Creep <span class="search-highlight">Damage</span> in Grade 91 Material
View
PDF
for content titled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of Creep <span class="search-highlight">Damage</span> in Grade 91 Material
Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite with uniformly dispersed secondary phases (carbides and carbo-nitrides). This microstructure, crucial for reliable service performance, is achieved through precise control of the manufacturing process, including steelmaking, hot forming, and final heat treatment. This investigation builds upon earlier research into the relationship between manufacturing parameters and short-term creep-rupture properties in T91 tubes, and a recent update that included test results exceeding 30,000 hours. This study presents a comprehensive metallurgical analysis of ruptured test specimens. The investigation focuses on correlating manufacturing parameters with not only creep strength but also material ductility and microstructural evolution during long-term exposure, providing valuable insights into the material’s behavior under extended service conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 530-543, October 11–14, 2016,
... of component performance impose a multi-axial stress state in the material and enhance the development of damage in susceptible heats of material. This has a cumulative effect of reducing the damage tolerance of the component and inherently increases the risk to catastrophic failure. The performance of an ex...
Abstract
View Papertitled, Linking Performance of Parent Grade 91 Steel to the Cross-Weld Creep Performance Using Feature Type Tests
View
PDF
for content titled, Linking Performance of Parent Grade 91 Steel to the Cross-Weld Creep Performance Using Feature Type Tests
Grade 91 steel has been widely utilized in power plants over the last 20 years. Its specification worldwide has dramatically increased since the acceptance of Code Case 1943 for this material in 1983. Recent evaluation of a combination of ex-service Grade 91 steel components and virgin material has provided a unique opportunity to independently assess the performance of a combination of base metal and weldments. This approach has been grounded in the fundamental objective of linking metallurgical risk factors in Grade 91 steel to the cross-weld creep performance. Establishing critical risk factors in 9Cr steels is regarded as a key consideration in the integration of a meaningful life management strategy for these complex steels. The potential metallurgical risk factors in Grade 91 steel have been fundamentally divided into factors which affect strength, ductility or both. In this study, two heats of ex-service Grade 91 steel which exhibit dramatic differences in strength and ductility have been evaluated in the ex-service condition and re-heat treated to establish a relevant set of strength:ductility variables. This set of variables includes [strength:ductility]: low:low, medium:low, low:high and medium:high. The influence of these strength:ductility variables were investigated for feature type cross-weld creep tests to better evaluate the influence of the initial base material condition on cross-weld creep performance.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
... components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods...
Abstract
View Papertitled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical Fossil Plants
View
PDF
for content titled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical Fossil Plants
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 689-701, October 3–5, 2007,
... application of the loading conditions necessary to generate cyclic deformation/damage enhanced by creep deformation/damage and (or) vice versa, with the purpose of such tests being to determine material properties for: a) assessment input data for the deformation and damage condition analysis of engineering...
Abstract
View Papertitled, Towards a Standard for Creep-Fatigue Testing
View
PDF
for content titled, Towards a Standard for Creep-Fatigue Testing
Procedures for assessing components subjected to cyclic loading at high temperatures require material property data that characterize creep-fatigue deformation behavior and resistance to cracking. While several standards and codes define test procedures for acquiring low cycle fatigue (LCF) and creep properties, no formal guidelines exist for determining creep-fatigue data. This paper reviews the results of a global survey conducted by EPRI to support the development of a new draft testing procedure intended for submission to ASTM and, ultimately, ISO standards committees. The survey included a review of relevant national and international standards, as well as responses to a questionnaire distributed to high-temperature testing specialists in Europe, North America, and Japan. Additionally, standards related to the calibration of load, extension, and temperature measurement devices were examined. The questionnaire responses provided insights into test specimen geometry, testing equipment, control and measurement of load, extension, and temperature, and data acquisition practices. This paper outlines the background and considerations for the proposed guidance in the new standard.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
... at the bore holes in the parts made of Alloy 617 B and Alloy C263 and the lifetime analysis are summarized in Table 3. In addition to the tolerable number of cycles up to crack initiation, the creep and fatigue damage are shown. The results show at the edge of the bore holes in the area of Alloy 617 B...
Abstract
View Papertitled, Design, Operation, Numerical Simulation and <span class="search-highlight">Damage</span> Assessment of a Header in the HWT Test Loop
View
PDF
for content titled, Design, Operation, Numerical Simulation and <span class="search-highlight">Damage</span> Assessment of a Header in the HWT Test Loop
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
... damage tolerance based on the tramp element weight fraction and other embrittlement calculations [22]. The use of metallurgical factors with conventional piping assessment techniques creates fundamental basis for improved life management. Figure 6: Notch sensitivity in Grade 92 showing a variation...
Abstract
View Papertitled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
View
PDF
for content titled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... strength, damage and defect tolerance (creep-fatigue interaction, thermo-mechanical fatigue, crack growth resistance), and toughness after thermal service loading. They interact and converge in concepts for determining the life time behavior. Primary and secondary stresses are design dependent...
Abstract
View Papertitled, Material and Design Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and Design Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1149-1160, February 25–28, 2025,
... at 400 °C, Frank loops were the predominant form of lattice damage at 1 dpa, whereas small defect clusters were more prevalent at 6 dpa. For the sample irradiated to 1 dpa at 600 °C, both Frank loops and small defect clusters were present in similar density. Nanoindentation was employed to assess...
Abstract
View Papertitled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
View
PDF
for content titled, Microstructural and Mechanical Evolution of High Temperature Proton Irradiated FeCrMnNi Concentrated Solid-Solution Alloy
A FeCrMnNi concentrated solid-solution alloy was irradiated with a 2 MeV proton beam up to 1 dpa and 6 dpa at temperatures of 400 °C and 600 °C. The microstructural changes induced by irradiation were characterized using Transmission Electron Microscopy (TEM). In samples irradiated at 400 °C, Frank loops were the predominant form of lattice damage at 1 dpa, whereas small defect clusters were more prevalent at 6 dpa. For the sample irradiated to 1 dpa at 600 °C, both Frank loops and small defect clusters were present in similar density. Nanoindentation was employed to assess the changes in mechanical properties (hardness) post-irradiation, revealing significant hardening in all irradiated samples. The results indicated that the hardening effect began to saturate at 1 dpa or earlier. Additionally, nanoindentation creep tests with a 1200-second dwell period produced stress exponents comparable to those obtained from conventional creep testing. The findings suggest a shift in the deformation mechanism from dislocation glide to dislocation climb in the sample irradiated to 6 dpa at 400 °C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... rupture strength, the contemporary scientific community has also been discussing the concept of damage tolerance , associated with different patterns in the nucleation and growth of creep voids and, consequently, varying rupture ductility. Short-duration tests, despite the natural variability in time...
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 669-677, February 25–28, 2025,
.... Johnson, and R. O. Ritchie, A damage-tolerant glass, Nature Mater, vol. 10, No. 2 (2011), pp. 123 128. [7] N. Abu-warda, A. J. López, M. D. López, and M. V. Utrilla, Ni20Cr coating on T24 steel pipes by HVOF thermal spray for high-temperature protection, Surface and Coatings Technology, vol. 381 (2020...
Abstract
View Papertitled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
View
PDF
for content titled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
This presentation compares the corrosion resistance of uncoated Haynes 230 and SS316HS substrates to the same substrates coated with a Fe-based amorphous alloy. The substrates were exposed to highly corrosive media, FLiNaK, for 120 hours at 700 °C. The findings indicate that the thermal spray amorphous alloy coating provided superior corrosion resistance within the coatings while protecting the substrates against the aggressive environment. As a result, the new amorphous metal coating improved the substrate's lifespan by providing better protection against high-temperature corrosion, paving the way for a more efficient and cost-effective future in various industrial applications.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 658-674, October 3–5, 2007,
... crack initiation and growth methodologies, examining life prediction approaches for various applications, identifying deficiencies in creep-fatigue damage assessment, and determining future research requirements. This paper presents key findings from the project, with particular attention...
Abstract
View Papertitled, The Role of Creep-Fatigue in Advanced Materials
View
PDF
for content titled, The Role of Creep-Fatigue in Advanced Materials
A comprehensive EPRI initiative launched in 2006 has addressed the critical need to better understand creep-fatigue interactions in power plants experiencing cyclic operation. This international collaboration of industry experts has focused on evaluating current test methods, analyzing crack initiation and growth methodologies, examining life prediction approaches for various applications, identifying deficiencies in creep-fatigue damage assessment, and determining future research requirements. This paper presents key findings from the project, with particular attention to the performance of creep-strengthened ferritic steels, specifically Grade 91 and 92 steels, providing essential insights for power plants facing increasingly demanding operational conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 149-160, October 11–14, 2016,
... waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied. advanced ultrasupercritical power plants creep damage evaluation creep-fatigue life nickel-chromium-cobalt-molybdenum...
Abstract
View Papertitled, Creep-Fatigue Life and <span class="search-highlight">Damage</span> Evaluation of Ni-Based Alloy 617 and Alloy 740H
View
PDF
for content titled, Creep-Fatigue Life and <span class="search-highlight">Damage</span> Evaluation of Ni-Based Alloy 617 and Alloy 740H
Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied.
1