Skip Nav Destination
Close Modal
Search Results for
creep strength enhanced ferritic steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 209
Search Results for creep strength enhanced ferritic steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1194-1198, October 11–14, 2016,
.... Examples include creep strength enhanced ferritic (CSEF) steels, austenitic stainless steels, nickel-based superalloys, and oxide dispersion strengthened alloys. Welding is extensively used in construction of fossil power plants. The performance of the weld region can be critical to the safe and economical...
Abstract
View Papertitled, Experimental Study of the <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> Weldments
View
PDF
for content titled, Experimental Study of the <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> Weldments
Fossil fuels continue to be the primary source of energy in the U.S and worldwide. In order to improve the efficiency of fossil power plants, advanced structural materials need to be developed and deployed to meet the need of high temperature creep resistance and corrosion resistance. Examples include creep strength enhanced ferritic (CSEF) steels, austenitic stainless steels, nickel-based superalloys, and oxide dispersion strengthened alloys. Welding is extensively used in construction of fossil power plants. The performance of the weld region can be critical to the safe and economical operation of fossil power plants. Degradations in performance such as reduced creep strength and premature failure in the weld region (e.g. Type IV failure in ferritic steels) are examples of longstanding welding and weldability problems for boiler and other components. In the past, extensive studies have been carried out to characterize the different microstructures in different regions of a weld, and to a certain extent, to establish the correlations between the microstructure and the creep strength. However, the metallurgical or microstructural induced local stress/strain variations have been seldom quantified. In addition, it has been long recognized that, due to the sharp microstructure and property gradients in the weld and HAZ, the standard creep testing procedure for the base metal can produce erroneous results when used for weld testing.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 877-887, October 11–14, 2016,
... testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included. creep strength creep strength enhanced ferritic steel mechanical testing metallurgical characterization microstructural examination steam oxidation...
Abstract
View Papertitled, Tenaris New High Steam Oxidation Resistant, <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> Thor 115
View
PDF
for content titled, Tenaris New High Steam Oxidation Resistant, <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> Thor 115
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASTM grade 91, above 600 °C, particularly related to scale growth and liftoff. After laboratory development, Thor was successfully validated at the industrial level. Several heats up to 80 metric tons were cast at the steel shop, hot rolled to tubes of various dimensions, and heat treated. Trial heats underwent extensive characterization, including deep microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 293-302, October 3–5, 2007,
... Abstract Recent in-service experiences have revealed critical vulnerabilities in creep-strength enhanced ferritic (CSEF) steels, with cracking potentially occurring surprisingly early in a component's operational life. Fabrication irregularities have been found to introduce substantial property...
Abstract
View Papertitled, Life Management of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>—Solutions for the Performance of Grade 91 <span class="search-highlight">Steel</span>
View
PDF
for content titled, Life Management of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>—Solutions for the Performance of Grade 91 <span class="search-highlight">Steel</span>
Recent in-service experiences have revealed critical vulnerabilities in creep-strength enhanced ferritic (CSEF) steels, with cracking potentially occurring surprisingly early in a component's operational life. Fabrication irregularities have been found to introduce substantial property deficiencies compared to average material performance, raising serious concerns among industry users regarding personnel safety and equipment reliability. In response, a collaborative research program between the Electric Power Research Institute and Structural Integrity Associates, Inc. has been initiated to comprehensively address these critical material challenges. The program's extensive scope encompasses a holistic approach to material management, including rigorous investigations spanning material procurement, shop fabrication, field erection, and appropriate quality assurance procedures for each implementation phase. The research will systematically examine the behavior of both base and weld metals, with a strategic focus on developing a comprehensive life prediction methodology and optimizing maintenance protocols. Beyond its core technical objectives, the program is designed to facilitate knowledge exchange through regular participant workshops, where both program-generated findings and global utility experiences will be critically reviewed and discussed to ensure the research maintains optimal direction and relevance. This collaborative effort aims to establish a robust framework for understanding, mitigating, and managing the complex challenges associated with CSEF steel materials in high-performance industrial applications.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1139-1150, October 22–25, 2013,
... Abstract Inflection is observed at 50% of 0.2% offset yield stress, that is HALF YIELD, on the relation between stress and creep rupture life of creep strength enhanced ferritic steels with tempered martensitic microstructure. Similar shape is generally recognized on the ferritic steels...
Abstract
View Papertitled, Role of Half Yield on <span class="search-highlight">Creep</span> Life Prediction of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
View
PDF
for content titled, Role of Half Yield on <span class="search-highlight">Creep</span> Life Prediction of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
Inflection is observed at 50% of 0.2% offset yield stress, that is HALF YIELD, on the relation between stress and creep rupture life of creep strength enhanced ferritic steels with tempered martensitic microstructure. Similar shape is generally recognized on the ferritic steels with martensitic or bainitic microstructure, in contrast to ferritic steels with ferrite and pearlite microstructure, as well as austenitic steels and superalloys except for several alloys. Ferritic steel with martensitic or bainitic microstructure indicates softening during creep exposure, however, hardening due to precipitation takes place in the ferritic steels with ferrite and pearlite microstructure and austenitic steels. This difference in microstructural evolution is associated with indication of inflection at half yield. Stress range of half yield in the stress vs. creep life diagram of creep strength enhanced ferritic steels is wider than that of conventional ferritic creep resistant steels with martensitic or bainitic microstructure. As a result of wide stress range of boundary condition, risk of overestimation of long-term creep rupture strength by extrapolating the data in the high-stress regime to the low-stress regime is considered to be high for creep strength enhanced ferritic steels.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... Abstract The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method...
Abstract
View Papertitled, Stress Dependence of Degradation and <span class="search-highlight">Creep</span> Rupture Life of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
View
PDF
for content titled, Stress Dependence of Degradation and <span class="search-highlight">Creep</span> Rupture Life of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 873-884, February 25–28, 2025,
... Abstract The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Ductility in 9Cr <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> - Part I, Structural Response
View
PDF
for content titled, <span class="search-highlight">Creep</span> Ductility in 9Cr <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> - Part I, Structural Response
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of simple Design by Formula rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. The metallurgical findings from the selected tests are the focus of the Part II paper. The association of performance with notch geometry, weld strength, and other potential contributing factors will be highlighted with a primary objective of informing the reader of the variability, and heat-specific behavior that is observed among this class of alloys widely used in modern thermal fleet components and systems.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 969-983, February 25–28, 2025,
... Abstract The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Ductility in 9Cr <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> - Part II, Microstructural Observations
View
PDF
for content titled, <span class="search-highlight">Creep</span> Ductility in 9Cr <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> - Part II, Microstructural Observations
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of these simple rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. This is the second part of a two-part paper; Part I reviewed the selected tests and discussed them from a mechanical perspective. The association of performance with specific microstructural features is briefly reviewed in this paper and the remaining gaps are highlighted for consideration among the international community.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 813-822, October 11–14, 2016,
... Abstract Because of the problems experienced with steam-side oxidation in commercial power plants, there has been continuing interest in better understanding the steam oxidation behavior of creep strength enhanced ferritic steels such as grades 23, 24 and 91 as well as 300-series stainless...
Abstract
View Papertitled, Field and Laboratory Observations on the Steam Oxidation Behavior of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> and Austenitic Stainless <span class="search-highlight">Steels</span>
View
PDF
for content titled, Field and Laboratory Observations on the Steam Oxidation Behavior of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> and Austenitic Stainless <span class="search-highlight">Steels</span>
Because of the problems experienced with steam-side oxidation in commercial power plants, there has been continuing interest in better understanding the steam oxidation behavior of creep strength enhanced ferritic steels such as grades 23, 24 and 91 as well as 300-series stainless steels such as 347H and 304H. Analysis of field-exposed tubes has provided information on the oxidation reaction products but relatively few specimens are available and there is limited information about the kinetics. Specimens have included tube sections with a shot peened surface, a treatment that is now widely used for austenitic boiler tubes. To complement this information, additional laboratory studies have been conducted in 1bar steam at 600°-650°C on coupons cut from conventional and shot-peened tubing. Exposures of 1-15 kh provide some information on the steam oxidation kinetics for the various alloys classes. While shot-peened type 304H retained its beneficial effect on oxidation resistance past 10,000 h at 600° and 625°C, the benefit appeared to decline after similar exposures at 650°C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, February 25–28, 2025,
... processed using conventional methods. creep strength enhanced ferritic steel gas metal arc welding mechanical properties nickel-based super alloys nickel-chromium alloys wire arc additive manufacturing Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from...
Abstract
View Papertitled, Wire Arc Additive Manufacturing of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> and Nickel Alloys
View
PDF
for content titled, Wire Arc Additive Manufacturing of <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span> and Nickel Alloys
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1016-1024, October 22–25, 2013,
... Abstract This paper summarizes recent efforts to improve creep performance in Grade 91 (Mod. 9Cr-1Mo, ASTM A387) steel weldments via non-standard heat treatments prior to welding. Such heat treatments offer a potential solution for minimizing Type IV failures in creep strength enhanced ferritic...
Abstract
View Papertitled, Effect of Non-Standard Heat Treatments on <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span>-<span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> (CSEF) <span class="search-highlight">Steel</span> Weldments
View
PDF
for content titled, Effect of Non-Standard Heat Treatments on <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span>-<span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> <span class="search-highlight">Ferritic</span> (CSEF) <span class="search-highlight">Steel</span> Weldments
This paper summarizes recent efforts to improve creep performance in Grade 91 (Mod. 9Cr-1Mo, ASTM A387) steel weldments via non-standard heat treatments prior to welding. Such heat treatments offer a potential solution for minimizing Type IV failures in creep strength enhanced ferritic (CSEF) steels. A lower temperature tempering (LTT, 650°C) of the 9Cr steels prior to gas tungsten arc welding (GTAW) resulted in improved creep-rupture life at 650°C compared to the samples tempered at a standard condition (HTT, 760°C) before welding. From detailed characterization of precipitation kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since M 23 C 6 in the FGHAZ was only partially dissolved prior to welding, which caused coarsening of existing M 23 C 6 after PWHT and premature creep failure in the FGHAZ. However, it was also found that the LTT raised the ductile-brittle transition temperature above room temperature (RT). Two different thermo-mechanical treatments (TMTs); two-step tempering and aus-forging/aus-aging, of the modified 9Cr-1Mo steels were attempted, in order to control the balance between creep properties and RT ductility, through control of precipitation kinetics of the M 23 C 6 carbides and/or MX carbo-nitrides. The hardness map of the TMT samples after GTAW and PWHT were evaluated.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 732-743, October 22–25, 2013,
... Abstract Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four...
Abstract
View Papertitled, Evaluation of Long-Term <span class="search-highlight">Creep</span> Rupture Life of <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> High Cr <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> on the Basis of Its Temperature Dependence
View
PDF
for content titled, Evaluation of Long-Term <span class="search-highlight">Creep</span> Rupture Life of <span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> High Cr <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> on the Basis of Its Temperature Dependence
Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four regions with different values of stress exponent n for creep rupture life commonly in stress-rupture data of the three ferritic steels. Activation energies Q for rupture life in the regions take at least three different values. The values of n and Q decrease in a longer-term region. The decrease in Q value is the cause of the overestimation of long-term rupture life predicted by the conventional TTP methods neglecting the change in Q value. Therefore, before applying a TTP method creep rupture data should be divided into several data sets so that Q value is unique in each divided data set. When this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1249-1256, February 25–28, 2025,
... resistance creep-strength enhanced bainitic ferritic steel fusion reactor components hardenability hardness impact toughness post-weld heat treatment Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita...
Abstract
View Papertitled, Development of PWHT-Free, Reduced Activation <span class="search-highlight">Creep</span>-<span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> Bainitic <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> for Large-Scale Fusion Reactor Components
View
PDF
for content titled, Development of PWHT-Free, Reduced Activation <span class="search-highlight">Creep</span>-<span class="search-highlight">Strength</span> <span class="search-highlight">Enhanced</span> Bainitic <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steel</span> for Large-Scale Fusion Reactor Components
A compositional modification has been proposed to validate an alloy design which potentially eliminates the requirement of post-weld heat treatment (PWHT) while preserving the advantage of mechanical properties in a reduced activation bainitic ferritic steel based on Fe-3Cr-3W-0.2V- 0.1Ta-Mn-Si-C, in weight percent, developed at Oak Ridge National Laboratory in 2007. The alloy design includes reducing the hardness in the as-welded condition for improving toughness, while increasing the hardenability for preserving the high-temperature mechanical performance such as creep-rupture resistance in the original steel. To achieve such a design, a composition range with a reduced C content combining with an increased Mn content has been proposed and investigated. Newly proposed “modified” steel successfully achieved an improved impact toughness in the as- welded condition, while the creep-rupture performance across the weldments without PWHT demonstrated ~50% improvement of the creep strength compared to that of the original steel weldment after PWHT. The obtained results strongly support the validity of the proposed alloy design.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 11-29, August 31–September 3, 2010,
... of newly developed steels and alloys at critical temperature conditions, for instance, 650°C for ferritic steels, 700°C for austenitic steels and 750°C for Ni- based alloys. This program concept has been based on the lessons from materials issues recently experienced in the creep strength enhanced ferritic...
Abstract
View Papertitled, R&amp;D Program for A-USC Material Development with <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span>/Degradation Assessment Studies
View
PDF
for content titled, R&amp;D Program for A-USC Material Development with <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span>/Degradation Assessment Studies
Recently advanced ultra-super critical (A-USC) pressure power plants with 700°C class steam parameters have been under development worldwide. Japanese material R&D program for A- USC beside the plant R&D program started in 2008, launched in 2007 under the METI/NEDO foundation includes not only alloy design explores and novel ideas for developing new steels and alloys that can fill critical needs in building 700°C class advanced power plants, but also fundamental studies on creep strength and degradation assessment, which are absolutely needed to assure the long-term safe use of newly developed steels and alloys at critical temperature conditions, for instance, 650°C for ferritic steels, 700°C for austenitic steels and 750°C for Ni- based alloys. This program concept has been based on the lessons from materials issues recently experienced in the creep strength enhanced ferritic steels used for 600°C class ultra-super critical power plants. Particular outputs from the program up to now are recognized as the ferritic steel having the creep strength of 100MPa at 650°C beyond 30,000h without any Type IV degradation and as the austenitic steel developed by means of inter-metallic compounds precipitation strengthening of grain boundary which should be strongest in creep ever found. Concurrently great progresses have been seen in the research works with positron annihilation life monitoring method applicable to various kinds of defects, structural free energy values, small punch creep test data for very limited interest area, crystallographic analyses, optimum time-temperature parameter regional creep rupture curve fitting method, hardness model, etc. which would highly contribute to find out and establish the structural parameters affecting to creep strength and degradation resulting in accurately estimating the 100,000h creep strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 714-731, October 22–25, 2013,
... Abstract As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Cavitation in CSEF <span class="search-highlight">Steels</span>
View
PDF
for content titled, <span class="search-highlight">Creep</span> Cavitation in CSEF <span class="search-highlight">Steels</span>
As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below that originally predicted from a simple extrapolation of short term data. One of the microstructural degradation mechanisms responsible for the reduction in strength is the development of creep voids. Nucleation, growth and inter linkage of voids also result in a significant loss of creep ductility. Indeed, elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant densities of voids further complicates in-service assessment of condition and weld repair of these steels. The present paper examines background on the nucleation and development of creep voids in 9 to 12%Cr martensitic steels and discusses factors affecting brittle behavior.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
... Abstract Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield...
Abstract
View Papertitled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> Property of Advanced <span class="search-highlight">Ferritic</span> <span class="search-highlight">Creep</span> Resistant <span class="search-highlight">Steels</span>
View
PDF
for content titled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Strength</span> Property of Advanced <span class="search-highlight">Ferritic</span> <span class="search-highlight">Creep</span> Resistant <span class="search-highlight">Steels</span>
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... Abstract Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering...
Abstract
View Papertitled, Transformation Behavior of Weld Metal for CSEF <span class="search-highlight">Steels</span> during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
View
PDF
for content titled, Transformation Behavior of Weld Metal for CSEF <span class="search-highlight">Steels</span> during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1173-1181, October 22–25, 2013,
... Abstract The Creep Strength Enhanced Ferritic steel grade 91 is widely used for both retrofit applications and primary construction on high temperature power plant. Although to date most structural integrity issues with this material have been associated with welds, as the operating hours...
Abstract
View Papertitled, The Practical Application of Small Scale Sampling and Impression <span class="search-highlight">Creep</span> Testing to Grade 91 Components
View
PDF
for content titled, The Practical Application of Small Scale Sampling and Impression <span class="search-highlight">Creep</span> Testing to Grade 91 Components
The Creep Strength Enhanced Ferritic steel grade 91 is widely used for both retrofit applications and primary construction on high temperature power plant. Although to date most structural integrity issues with this material have been associated with welds, as the operating hours of these plants accumulate, there will be a growing need for remanent creep life assessment of the base material. Arguably this is already the case for aberrant grade 91 material entering service in an incorrectly heat treated condition. In these circumstances the strength may fall below the normally accepted lower bound of the creep strength range and some indication of actual strength may be required. One strategy to address potential base material failure is to use small scale sampling of individual components, followed by small scale creep testing, to investigate the current creep strength present. The data can be compared with the equivalent data produced for well characterised material known to be at the lower bound of the creep strength range. This paper describes a methodology for using the impression creep data obtained to provide both creep strength ranking and an estimate of absolute creep strength for individual grade 91 components. This will enable appropriate judgements to be made by plant operators on repair/run decisions. For those components remaining in service, it allows for the weakest items to be given priority for early re-inspection at future outages. The ultimate goal is to identify base material creep damage development at as early a stage as possible and well in advance of failure in service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 282-293, October 21–24, 2019,
... Abstract For last half century the development of creep strength enhanced ferritic steels has been continued and presently ASME grades 91, 92 and 122 extremely stronger than conventional low alloy steels have extensively been used worldwide in high efficient power plants. However the use...
Abstract
View Papertitled, High Temperature Oxidation Behavior of High Nitrogen <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
View
PDF
for content titled, High Temperature Oxidation Behavior of High Nitrogen <span class="search-highlight">Ferritic</span> <span class="search-highlight">Steels</span>
For last half century the development of creep strength enhanced ferritic steels has been continued and presently ASME grades 91, 92 and 122 extremely stronger than conventional low alloy steels have extensively been used worldwide in high efficient power plants. However the use of these creep strength enhanced 9-12%Cr steels is limited to around 630°C or 650°C at maximum in terms of high temperature strength and oxidation resistance. Consequently the appearance of ferritic steels standing up to higher temperature of around 700°C to substitute of high strength austenitic steels is strongly desired. Under the state, the addition of high nitrogen to ferritic steels is attracting considerable attention because of improving high temperature strength and oxidation resistance of them. This work was done to evaluate the oxidation resistance of high nitrogen steels and to investigate the effect nitrogen and microstructure on oxidation resistance using 9-15%Cr steels with about 0.3% nitrogen manufactured by means of Pressurized Electro- Slag Remelting (PESR) method in comparison with ASME grades 91 and 122. As a result, high nitrogen ferritic steels showed excellent oxidation resistance comparing with nitrogen-free steels and ASME grades 91 and 122. The oxidation resistance of 9%Cr ferritic steels depends on the nitrogen content in the each steel. That is, the weight gain decreases with an increase in nitrogen content. Moreover, the oxide scale of high nitrogen steel contained a high concentration of Cr. It is conjectured that, in high temperature oxidation, nitrogen plays a key role in promoting the formation of the oxide scale which has high concentration of Cr, inhibiting oxidation from proceeding. And also it was found that the oxidation resistance of the high nitrogen steels does not depend greatly on Cr content but on their microstructure. The oxidation resistance of high nitrogen ferritic heat-resistant steels increased as the fraction of martensite structure increased. These results indicate for high nitrogen steels Cr diffusion along grain boundaries is further promoted resulting in the formation of protective oxide scale having high Cr concentration. Furthermore as new findings it was confirmed that the Cr diffusion in substrate of steels to form Cr concentrated oxide scale on the metal surface is accelerated by nitrogen while suppressed by carbon in matrix of steel.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 440-445, October 11–14, 2016,
... (CCPP). The applications for which this material is used enforce severe requirements on strength, corrosion, creep properties and thermal stability during service. The properties of Creep Strength Enhanced Ferritic steels (CSEF) such as Grade 91 are critically dependent on manufacturing factors like...
Abstract
View Papertitled, Steelmaking Challenges to Achieve Grade 91 with Ultra-Low Impurity Content
View
PDF
for content titled, Steelmaking Challenges to Achieve Grade 91 with Ultra-Low Impurity Content
Grade 91 steel has achieved broad acceptance within the modern boiler industry to fabricate a variety of critical pressure components including tubing, piping and headers, particularly in Ultra Super Critical (USC), Advanced Ultra Super Critical (A-USC) and Combined Cycle Power Plants (CCPP). The applications for which this material is used enforce severe requirements on strength, corrosion, creep properties and thermal stability during service. The properties of Creep Strength Enhanced Ferritic steels (CSEF) such as Grade 91 are critically dependent on manufacturing factors like steelmaking, heat treatments and welding: poor control of these parameters can severely compromise material properties. In scientific literature, several studies correlate low creep ductility to high content of trace elements such As, Sn, Sb, Pb, Cu, P and S. Since the current reference Codes, namely ASTM/ASME, don’t require particular restrictions for these elements, Electric Power Research Institute (EPRI) has issued guidelines for grade 91 which enforce a significant reduction of impurities and trace elements. This paper discusses steelmaking operating challenges to produce Grade 91 steel with very low contents of the above mentioned residual elements, starting from the furnaces charges, up to the chemical composition measuring equipment used in the steel shop laboratories.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 612-622, February 25–28, 2025,
... Abstract Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite...
Abstract
View Papertitled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of <span class="search-highlight">Creep</span> Damage in Grade 91 Material
View
PDF
for content titled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of <span class="search-highlight">Creep</span> Damage in Grade 91 Material
Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite with uniformly dispersed secondary phases (carbides and carbo-nitrides). This microstructure, crucial for reliable service performance, is achieved through precise control of the manufacturing process, including steelmaking, hot forming, and final heat treatment. This investigation builds upon earlier research into the relationship between manufacturing parameters and short-term creep-rupture properties in T91 tubes, and a recent update that included test results exceeding 30,000 hours. This study presents a comprehensive metallurgical analysis of ruptured test specimens. The investigation focuses on correlating manufacturing parameters with not only creep strength but also material ductility and microstructural evolution during long-term exposure, providing valuable insights into the material’s behavior under extended service conditions.
1