Skip Nav Destination
Close Modal
Search Results for
creep rupture behavior
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 334
Search Results for creep rupture behavior
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Nickel-Base Alloys for Superheaters After Cold Working
View
PDF
for content titled, <span class="search-highlight">Creep</span> and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Nickel-Base Alloys for Superheaters After Cold Working
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 131-142, October 22–25, 2013,
... predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Precipitation-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Precipitation-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel 740 and Haynes 282 alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 16-28, October 3–5, 2007,
.../asm.cp.am-epri-2007p0016 Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications John P. Shingledecker Oak Ridge National Laboratory Oak Ridge, TN, 37831 6155 [email protected] Abstract Creep rupture experiments were conducted on candidate Ultrasupercritical (USC...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> and Recrystallization in Cold-Bent Boiler Tubing for USC Applications
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> and Recrystallization in Cold-Bent Boiler Tubing for USC Applications
Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775°C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 162-173, October 21–24, 2019,
... Abstract Two materials with different purity of 2.25Cr-1Mo steel thick weld joint were prepared and creep rupture behavior was investigated by large sized specimens. For high purity material, two types of challenging heat treatment was tried to modify the original microstructural conditions...
Abstract
View Papertitled, Effect of Impurity Level and Normalizing Condition on <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of 2.25Cr-1Mo Steel Thick Weld Joint
View
PDF
for content titled, Effect of Impurity Level and Normalizing Condition on <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of 2.25Cr-1Mo Steel Thick Weld Joint
Two materials with different purity of 2.25Cr-1Mo steel thick weld joint were prepared and creep rupture behavior was investigated by large sized specimens. For high purity material, two types of challenging heat treatment was tried to modify the original microstructural conditions. Weld joints were made and large sized creep test specimens were machined. Creep tests were performed at 903K, 40MPa. Specimen made from low purity material fractured at fine grained heat affected zone (FGHAZ) and showed so-called Type IV cracking. On the other hand, specimen made from high purity material showed maximum creep damage at weld metal. In the case of specimens applied challenging heat treatment, remarkably high ductility were observed at fracture. Regarding 2.25Cr-1Mo steel, it was confirmed that the suppression of Type IV cracking had been basically achieved by past improvement on purity level. At the same time, improvement of heat treatment condition was found to have further effect. Because of improved creep properties of high purity material, properties of weld metal had rose up to be the next issue to be examined. At least, taking care on layout design of weld beads to avoid creating wide spread fine grained portion is desired.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1169-1180, October 21–24, 2019,
... International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31399/asm.cp.am-epri-2019p1169 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org Creep-Rupture Behavior of Alloy CCA617...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Alloy CCA617 Base Metal and Weldments under Advanced Steam Conditions
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> <span class="search-highlight">Behavior</span> of Alloy CCA617 Base Metal and Weldments under Advanced Steam Conditions
This paper presents results and analyses from long-term creep-rupture testing of alloy CCA617 (also known as alloy 617B) in wrought and welded forms at temperatures and stresses relevant to power generation under advanced steam conditions. The refined controlled chemical composition of CCA617 resulted in increased creep-rupture strength compared to the conventional alloy 617 chemistry at applied stress levels of ~150 MPa and above. Long-term creep rupture testing of weldments (in one case, over 100,000 h) showed that their creep-rupture lives were dependent on the welding process. Gas-tungsten-arc and shielded metal-arc weldments of CCA617 performed nearly equivalent to standard alloy 617 base metals in creep, but there was some debit in creep-rupture resistance when compared to CCA617 base metal. Submerged arc welding produced weldments that were notably weaker than both versions of alloy 617 base metal under creep conditions, possibly due to lack of optimization of filler wire composition and flux.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
..., AUSTENITIC STAINLESS STEEL-FERRITIC STEEL WELD JOINT FAILURES, WELD J (MIAMI FLA) V 61(9) (1982) 302s-311s. [21] P. Parameswaran, K. Laha, Role of Microstructure on Creep Rupture Behaviour of Similar and Dissimilar Joints of Modified 9Cr-1Mo Steel, Procedia Engineering 55 (2013) 438-442. [22] M. Yamazaki, T...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 667-678, August 31–September 3, 2010,
... Abstract A study of P92 steel's creep-rupture behavior at 625°C revealed distinct relationships between phase chemistry and stress rupture properties across two regions: high-stress/short-term (180-150 MPa for 30-454 h) and low-stress/long-term (140-110 MPa for 2881-10,122 h). Using EPMA-EDS...
Abstract
View Papertitled, Effects of Variation of Phase Chemistry on Multi-Region Stress <span class="search-highlight">Rupture</span> Properties at 625°C for P92 Steel
View
PDF
for content titled, Effects of Variation of Phase Chemistry on Multi-Region Stress <span class="search-highlight">Rupture</span> Properties at 625°C for P92 Steel
A study of P92 steel's creep-rupture behavior at 625°C revealed distinct relationships between phase chemistry and stress rupture properties across two regions: high-stress/short-term (180-150 MPa for 30-454 h) and low-stress/long-term (140-110 MPa for 2881-10,122 h). Using EPMA-EDS with Multiphase Separation Method (MPSM), researchers analyzed how M 23 C 6 and Laves phase coarsening and chemistry (focusing on Cr, W, and Mo distribution) varied between these regions. This multi-region analysis established a framework for more efficient creep testing and improved extrapolation of short-term results to predict long-term rupture strengths, while providing reference phase chemistry data for future studies.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 654-666, August 31–September 3, 2010,
... Abstract A study of Grade 91 steel's creep rupture behavior at 600°C (up to 90,000 hours) and 650°C (up to 23,000 hours) reveals that static recovery of tempered martensite lath structures leads to decreased stress exponent and breakdown of creep strength. While M 23 C 6 and MX particles...
Abstract
View Papertitled, Microstructural Degradation during High Temperature Exposure Up to 10 5 h and Its Effects on <span class="search-highlight">Creep</span> of Grade 91 Steel
View
PDF
for content titled, Microstructural Degradation during High Temperature Exposure Up to 10 5 h and Its Effects on <span class="search-highlight">Creep</span> of Grade 91 Steel
A study of Grade 91 steel's creep rupture behavior at 600°C (up to 90,000 hours) and 650°C (up to 23,000 hours) reveals that static recovery of tempered martensite lath structures leads to decreased stress exponent and breakdown of creep strength. While M 23 C 6 and MX particles initially stabilize lath structures by hindering sub-boundary migration, the progressive aggregation of M 23 C 6 particles reduces their pinning force, triggering static recovery. Although Grade 91 steel shows better M 23 C 6 thermal stability compared to Grade 122 type steels (9-12%Cr-2W-0.4Mo-1Cu-VNb), coarsening of M 23 C 6 particles and subgrain width is expected to occur slightly beyond 100,000 hours at 600°C, potentially leading to creep strength breakdown.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... are quantitatively analyzed and correlated with the creep-rupture behavior, aiming to provide the property/microstructural dataset as boundary conditions of physics-based modeling under XMAT project. EXPERIMENTAL PROCEDURES Four different 347H stainless steel heats were prepared through a vacuum induction melting...
Abstract
View Papertitled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 580-591, October 21–24, 2019,
.... (a) yield strength, (b) tensile strength, and (c) total elongation Figure 2: Comparison of creep-rupture behavior for Haynes 282 sand casting of the current study and wrought Haynes 282 data from ref. 7 In order to evaluate the effect of different environments on creep life, testing in air, 100% CO2, and 90...
Abstract
View Papertitled, Characterization of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, Characterization of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
The harsh operating conditions of Advanced Ultra-Supercritical (A-USC) power plants, i.e., steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi), require the use of Ni-based alloys with high temperature performance. Currently, the U.S. Department of Energy Fossil Energy program together with Electric Power Research Institute (EPRI) and Energy Industries of Ohio (EIO) is pursuing a Component Test (Comets) project to address material- and manufacturing-related issues for A-USC applications. Oak Ridge National Laboratory (ORNL) is supporting this project in the areas of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness, tensile, air and environmental creep, low cycle fatigue, creep-fatigue, environmental high cycle fatigue, and supporting microstructural characterization.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
... creep conditions, through the following three phases of collaboration. (i) Evaluation of creep-fatigue behavior of Grade 92 steels and its predictability (2009-2012) [1,2] (ii) Creep Rupture Behavior of Plain and Notched Bar Specimens of Grade 92 Steel (2012-2015) [3-4] (iii) Creep Rupture and Creep...
Abstract
View Papertitled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
View
PDF
for content titled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, February 25–28, 2025,
... in HAZ. The continuum damage creep models, which incorporate the damage effect through phenomenological laws, have been utilized to study the creep and creep rupture behavior of ferritic steel weldments [10, 12, 13]. These models enable the computation of time-dependent deformation and damage across...
Abstract
View Papertitled, An Engineering Approach for Weld <span class="search-highlight">Creep</span> Lifetime Assessment Based on Local Property Measurement
View
PDF
for content titled, An Engineering Approach for Weld <span class="search-highlight">Creep</span> Lifetime Assessment Based on Local Property Measurement
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 916-932, August 31–September 3, 2010,
... austenitic stainless steels (NF709) fall close to the creep-rupture behavior of the solid solution Ni-based alloys, which are being considered for USC steam piping and header components [7]. A new cast austenitic stainless steel, CF8C-Plus, has been developed by the Oak Ridge National Laboratory (ORNL...
Abstract
View Papertitled, Mechanical Properties and Microstructure of a Wrought Austenitic Stainless Steel for Advanced Fossil Power Plant Applications
View
PDF
for content titled, Mechanical Properties and Microstructure of a Wrought Austenitic Stainless Steel for Advanced Fossil Power Plant Applications
Advanced Ultra-supercritical (A-USC) steam power-plant technology is being developed for better efficiency and lower emissions at 700°C and above, but is based mainly on Ni-based alloys. The ability to include lower-cost alloys with appropriate high-temperature performance should have substantial technological and economic benefits. CF8C-Plus is a cast austenitic stainless steel recently developed for other applications at 600-900°C, which has creep-strength comparable to many solid-solution Ni-based alloys. EPRI and Carpenter Technology produced a 400 lb heat of CF8C-Plus steel and hot-forged it at 5:1 and 12:1 reductions, to assess feasibility of the alloy as a wrought advanced stainless steel for potential use as steam headers and piping for A-USC power plant applications. The hot-forged alloy has a recrystallized grain structure 6-9 times finer than the as-cast dendritic structure, resulting in better strength and impact resistance at room-temperature, and about 20% higher yield-strength (YS) at 760°C, and similar or better ductility compared to the as-cast material. The initial creep-rupture testing at 700-800°C for up to 2000h also indicates similar or better rupture resistance and better creep-ductility for wrought compared to cast material. The next steps needed to test performance of the wrought austenitic stainless steel for extruded headers and piping are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 488-495, October 21–24, 2019,
.... Although rupture time showed linear relation to change in hardness, creep behavior was different with rolling reductions below 20% and above 30%. In former case, creep damage are accelerated at grain boundaries due to cold-rolling. It is thought to be resulted in reduction of rupture time...
Abstract
View Papertitled, Effect of Cold Working on Oxidation Assisted Cracking <span class="search-highlight">Behaviors</span> on Alloy 718
View
PDF
for content titled, Effect of Cold Working on Oxidation Assisted Cracking <span class="search-highlight">Behaviors</span> on Alloy 718
This study aims to examine the effects of grain boundary oxidation and creep on crack initiation and fracture behaviors in cold worked surface layer, under static tensile stresses in air. To determine these effects in relation to percent cold work and hardness scale, cold-rolled plates with a reduction ratios between 10% and 50% were prepared. Uniaxial constant load (UCL) tests were conducted at elevated temperature in air using smooth round bar specimen. UCL tests with a load of 0.9σy (926MPa) at 550°C show that rupture time for all cold- rolled materials were shorter than that of as-received material. From cross-sectional observation after UCL testing, surface crack at grain boundary and voids were observed in as-received material, whereas creep cracks were also observed in cold-rolled materials. This implied that crack initiation was assisted by cold working. Comparing test results with a load reduced to 0.8σy (823MPa), difference of rupture time was expected as a factor of 5 for as-received material, and measured as 2-3 for cold-rolled materials. It was suggested that cold worked layer was more sensitive to creep than base metal.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... Abstract Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> and Failure <span class="search-highlight">Behavior</span> of Welded Joints Made of Alloy 617B
View
PDF
for content titled, <span class="search-highlight">Creep</span> and Failure <span class="search-highlight">Behavior</span> of Welded Joints Made of Alloy 617B
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1194-1198, October 11–14, 2016,
... P91 pressure vessel."International journal of pressure vessels and piping 60, no. 3 (1994): 237-257. [13] Brinkman, C. R., V. K. Sikka, J. A. Horak, and M. L. Santella. "Long-Term Creep Rupture Behavior of Modified 9Cr-1Mo Steel Base and Weldment Behavior." ORNL/TM-10504, Oak Ridge National Laboratory...
Abstract
View Papertitled, Experimental Study of the <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span> Strength Enhanced Ferritic Steel Weldments
View
PDF
for content titled, Experimental Study of the <span class="search-highlight">Creep</span> Performance of <span class="search-highlight">Creep</span> Strength Enhanced Ferritic Steel Weldments
Fossil fuels continue to be the primary source of energy in the U.S and worldwide. In order to improve the efficiency of fossil power plants, advanced structural materials need to be developed and deployed to meet the need of high temperature creep resistance and corrosion resistance. Examples include creep strength enhanced ferritic (CSEF) steels, austenitic stainless steels, nickel-based superalloys, and oxide dispersion strengthened alloys. Welding is extensively used in construction of fossil power plants. The performance of the weld region can be critical to the safe and economical operation of fossil power plants. Degradations in performance such as reduced creep strength and premature failure in the weld region (e.g. Type IV failure in ferritic steels) are examples of longstanding welding and weldability problems for boiler and other components. In the past, extensive studies have been carried out to characterize the different microstructures in different regions of a weld, and to a certain extent, to establish the correlations between the microstructure and the creep strength. However, the metallurgical or microstructural induced local stress/strain variations have been seldom quantified. In addition, it has been long recognized that, due to the sharp microstructure and property gradients in the weld and HAZ, the standard creep testing procedure for the base metal can produce erroneous results when used for weld testing.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 180-189, October 22–25, 2013,
... at 700 °C. (MPa) *800 °C / 4 h / AC Alloy 263* / dET 500 T = 700 °C Alloy 617 / dEO 0 50 Figure 1: Stress-strain-curves of Alloy 617 and Alloy 263 at 700 °C 181 Creep rupture behavior On both materials Alloy 263 and Alloy 617, creep rupture tests were conducted on smooth cylindrical specimens...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Crack Growth <span class="search-highlight">Behavior</span> as a Superalloy Selection Consideration for A-USC Power Plant Applications
View
PDF
for content titled, <span class="search-highlight">Creep</span> Crack Growth <span class="search-highlight">Behavior</span> as a Superalloy Selection Consideration for A-USC Power Plant Applications
To improve efficiency and flexibility and reduce CO 2 emissions, advanced ultra super critical (AUSC) power plants are under development, worldwide. Material development and its selection are critical to the success of these efforts. In several research and development programs / projects the selection of materials is based on stress rupture, oxidation and corrosion tests. Without doubt, these criteria are important. To improve the operational flexibility of modern power plants the fatigue properties are of increased importance. Furthermore, for a safe operation and integrity issues the knowledge about the crack behavior is essential. Crack initiation and crack growth may be caused by natural flaws or cracks induced by component operation. In order to develop new materials, properties like tensile strength and creep strength are an important part of qualification and subsequent approval by notified bodies. Consequently short term properties as well as time-temperature dependent properties are generated and taken into considerations. In the case of high strength γ'-strengthening nickel-base alloys investigating the creep crack behavior is also strongly recommended. This article shows results of currently investigated nickel-based alloys for newly developed headers, pipes and other high temperature boiler applications and their critical creep crack propagation behavior.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, February 25–28, 2025,
... Abstract There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture...
Abstract
View Papertitled, Assessing the Impact of Molten Halide Salts on <span class="search-highlight">Creep</span> of Structural Alloys at 650°-750°C
View
PDF
for content titled, Assessing the Impact of Molten Halide Salts on <span class="search-highlight">Creep</span> of Structural Alloys at 650°-750°C
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 612-622, February 25–28, 2025,
... and resulting in very low reduction of area and elongation. Such behavior is especially concerning in service, as the accumulation of creep damage, and the coalescence of voids manifest as cracks and premature ruptures, often within a very short time frame complicating inspection-dominated life management...
Abstract
View Papertitled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of <span class="search-highlight">Creep</span> Damage in Grade 91 Material
View
PDF
for content titled, Effect of Manufacturing Process Parameters on Long-Term Microstructural Evolution and Accumulation of <span class="search-highlight">Creep</span> Damage in Grade 91 Material
Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite with uniformly dispersed secondary phases (carbides and carbo-nitrides). This microstructure, crucial for reliable service performance, is achieved through precise control of the manufacturing process, including steelmaking, hot forming, and final heat treatment. This investigation builds upon earlier research into the relationship between manufacturing parameters and short-term creep-rupture properties in T91 tubes, and a recent update that included test results exceeding 30,000 hours. This study presents a comprehensive metallurgical analysis of ruptured test specimens. The investigation focuses on correlating manufacturing parameters with not only creep strength but also material ductility and microstructural evolution during long-term exposure, providing valuable insights into the material’s behavior under extended service conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
... Based on these results, the longer-term creep rupture testing focused on Alloy 20. The decision to focus on Alloy 20 was made on the basis of good tensile ductility in the overaged condition, good microstructural stability, equivalent creep behavior to alloy 19, and what was judged to be a more...
Abstract
View Papertitled, Design, <span class="search-highlight">Creep</span> Performance and Deformation <span class="search-highlight">Behavior</span> of an Eta-Phase Strengthened Nickel-Base Alloy for A-USC Power Plant Applications
View
PDF
for content titled, Design, <span class="search-highlight">Creep</span> Performance and Deformation <span class="search-highlight">Behavior</span> of an Eta-Phase Strengthened Nickel-Base Alloy for A-USC Power Plant Applications
By utilizing computational thermodynamics in a Design of Experiments approach, it was possible to design and manufacture nickel-base superalloys that are strengthened by the eta phase (Ni3Ti), and that contain no gamma prime (Ni3Al,Ti). The compositions are similar to NIMONIC 263, and should be cost-effective, and have more stable microstructures. By varying the aging temperature, the precipitates took on either cellular or Widmanstätten morphologies. The Widmanstätten-based microstructure is thermally stable at high temperatures, and was found to have superior ductility, so development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep.
1