Skip Nav Destination
Close Modal
Search Results for
creep rupture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 438
Search Results for creep rupture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Behavior of Nickel-Base Alloys for Superheaters After Cold Working
View
PDF
for content titled, <span class="search-highlight">Creep</span> and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Behavior of Nickel-Base Alloys for Superheaters After Cold Working
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 466-477, October 11–14, 2016,
... Abstract A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture...
Abstract
View Papertitled, Evaluation of Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of Gr.91 Steel by Analysis of On-Going <span class="search-highlight">Creep</span> Curves
View
PDF
for content titled, Evaluation of Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of Gr.91 Steel by Analysis of On-Going <span class="search-highlight">Creep</span> Curves
A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture strength has been reported recently in long-term creep of grade 91 steel. The quick decrease of the steel is discussed by using the rupture lives evaluated. The quick decrease is confirmed in the present study in the time range longer than 3 x 10 4 h at 600°C.
Proceedings Papers
Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... Abstract The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method...
Abstract
View Papertitled, Stress Dependence of Degradation and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of <span class="search-highlight">Creep</span> Strength Enhanced Ferritic Steels
View
PDF
for content titled, Stress Dependence of Degradation and <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of <span class="search-highlight">Creep</span> Strength Enhanced Ferritic Steels
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 125-130, October 11–14, 2016,
.... Siefert, editors INFLUENCE OF DATA SCATTERING ON ESTIMATION OF 100,000 HOURS CREEP RUPTURE STRENGTH OF ALLOY 617 AND ALLOY 740 BY LARSON-MILLER METHOD Fujio Abe, Masaaki Tabuchi and Masao Hayakawa National Institute for Materials Science 1-2-1 Sengen, Tsukuba 305-0047, Japan ABSTRACT The reasonable...
Abstract
View Papertitled, Influence of Data Scattering on Estimation of 100,000 Hours <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of Alloy 617 and Alloy 740 by Larson-Miller Method
View
PDF
for content titled, Influence of Data Scattering on Estimation of 100,000 Hours <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of Alloy 617 and Alloy 740 by Larson-Miller Method
The reasonable procedures for estimation of 100,000 h creep rupture strength have been investigated for Alloy 617 and Alloy 740 for A-USC power plants by Larson Miller method. The creep rupture data of longer duration than 500 h in the temperature range between 593 and 816 °C and between 600 and 850 °C were used for the analysis on Alloy 617 and Alloy 740, respectively. The data were obtained by Special Metals. In these temperature ranges, Ni3Al-γ’ can precipitate in Alloy 617 and Alloy 740 during creep. The maximum time to rupture was 40,126.7 and 24,066 h for Alloy 617 and Alloy 740, respectively. The rupture data for Alloy 617 exhibit large scattering, especially at 760 °C, showing a split into two groups. After eliminating the shorter time to rupture data at 760 °C, the regression analysis using the second order equation of Larson-Miller parameter gives us the Larson-Miller constant C of 12.70 and the 100,000 h creep rupture strength of 100 MPa at 700 °C. The regression analysis underestimates the constant C and corresponding 100,000 h creep rupture strength of Alloy 617, as shown by the regression curves locating below the rupture data at long times, while those locating above the rupture data at short times. The underestimation of constant C is caused by large data scattering. The linear extrapolation of log tr versus reciprocal temperature 1/T plot to 1/T = 0 at constant stresses gives us the constant C of 18.5, which is much larger than that by the regression analysis. Using an appropriate constant C of 18.45, the 100,000 h creep rupture strength of Alloy 617 is estimated to be 123 MPa at 700 °C. On the other hand, the rupture data for Alloy 740 exhibit only a little bit scattering. The regression analysis gives us C = 18.45, which agrees very well with that by the linear extrapolation of log tr versus 1/T plot to 1/T = 0. The 100,000 h creep rupture strength of Alloy 740 is estimated to be 214 and 109 MPa at 700 and 760 °C, respectively.
Proceedings Papers
Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
... of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found...
Abstract
View Papertitled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
View
PDF
for content titled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 429-439, October 11–14, 2016,
... Abstract The influence of holding time during tempering on the long-term creep rupture strength of mod.9Cr-1Mo steel was investigated in this study, so as to elucidate proper heat treatment for boiler applications. Tempering was conducted at 770°C for 0.5h, 1h, 3h, 10h and 100h for the test...
Abstract
View Papertitled, Influence of Holding Time During Tempering on the Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of MOD.9Cr-1Mo Steel
View
PDF
for content titled, Influence of Holding Time During Tempering on the Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of MOD.9Cr-1Mo Steel
The influence of holding time during tempering on the long-term creep rupture strength of mod.9Cr-1Mo steel was investigated in this study, so as to elucidate proper heat treatment for boiler applications. Tempering was conducted at 770°C for 0.5h, 1h, 3h, 10h and 100h for the test materials, after re-normalization at 1050°C for 1h in all cases. Creep rupture tests were conducted at 600°C, and ruptured specimens were investigated to better understand the microstructural changes, including changes in the number density of precipitates, in order to observe and discuss their creep strength. All creep rupture test results for materials tempered within 10h exceeded the average creep strength of T91. Shorter tempering times such as 0.5h and 1h were clearly correlated with longer time to rupture at 600°C under 80MPa to 100MPa stress conditions. Reduction of area in creep-ruptured specimens decreased principally with lowered creep stress. Materials tempered for 0.5h and 100h showed the lowest reduction of area at 90MPa and 100MPa respectively, and their reduction of area recovered at lower than those stress levels. These stresses, showing minimum reduction of area, met inflection stress in the creep rupture strength curve.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 951-961, October 11–14, 2016,
... that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of Dissimilar CB2-P92 FCW Joint Welds
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength of Dissimilar CB2-P92 FCW Joint Welds
As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds.
Proceedings Papers
Long-Term Creep Rupture Strength and Microstructural Evolution of Weldments in Mod.9Cr-1Mo Steels
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1149-1159, October 11–14, 2016,
... Abstract Large heat-to-heat variation of creep rupture strength in weldments of mod.9Cr-1Mo steels was observed in the creep rupture tests conducted for two different heats at 600°C and 650°C. One heat showed consistently lower time-to-rupture than the other for 130-60MPa at 600°C. Detailed...
Abstract
View Papertitled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Microstructural Evolution of Weldments in Mod.9Cr-1Mo Steels
View
PDF
for content titled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Microstructural Evolution of Weldments in Mod.9Cr-1Mo Steels
Large heat-to-heat variation of creep rupture strength in weldments of mod.9Cr-1Mo steels was observed in the creep rupture tests conducted for two different heats at 600°C and 650°C. One heat showed consistently lower time-to-rupture than the other for 130-60MPa at 600°C. Detailed microstructural investigations revealed that the number density of precipitates in the weaker heat was remarkably lower than that associated with the stronger heat through most of the creep region. Accordingly, heat-to-heat variation of creep rupture strength was attributed to the difference in the precipitate strengthening effects throughout creep. Equilibrium calculation predicted that the smaller phase fraction of M 23 C 6 and VN precipitates due to the lower content of chromium and lower ratio of nitrogen/aluminum in the weaker heat. However, given that long-term creep rupture strength at 650°C converged for the two heats, the microstructure including precipitates may settle into a similar level for subsequent longer hours even at 600°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 131-142, October 22–25, 2013,
... Abstract To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Behavior of Precipitation-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Behavior of Precipitation-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel 740 and Haynes 282 alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 230-241, October 22–25, 2013,
... heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Performance of Inconel Alloy 740 and Welds
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Performance of Inconel Alloy 740 and Welds
Inconel alloy 740/740H (ASME Code Case 2702) is an age-hardenable nickel-based alloy designed for advanced ultrasupercritical (A-USC) steam boiler components (superheaters, reheaters, piping, etc.). In this work, creep testing, beyond 40,000 hours was conducted a series of alloy 740 heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength. Based on these results, it was found that alloy 740 has the highest strength and temperature capability of all the potential A-USC alloys available today.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 627-636, October 22–25, 2013,
... Abstract The effects of Cr and W on the creep rupture life of 8.5-11.5Cr steels at 650°C were evaluated. Throughout this paper the specimen composition is expressed in mass percent. The creep rupture life of 8.5Cr steel is the longest in 8.5-11.5Cr steels at 650°C under the stress of 78MPa...
Abstract
View Papertitled, Effects of Cr and W Content in High Cr Ferritic Heat-Resistant Steels on Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength
View
PDF
for content titled, Effects of Cr and W Content in High Cr Ferritic Heat-Resistant Steels on Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength
The effects of Cr and W on the creep rupture life of 8.5-11.5Cr steels at 650°C were evaluated. Throughout this paper the specimen composition is expressed in mass percent. The creep rupture life of 8.5Cr steel is the longest in 8.5-11.5Cr steels at 650°C under the stress of 78MPa. The creep rupture life of 9Cr steel at 650°C was extended with increasing W content. The creep strength of the modified steel, 9Cr-4W-3Co-0.2V-NbBN steel, at 650°C did not decrease sharply up to 32000h. The 105h creep rupture temperature of this steel under the stress of 100MPa was estimated to be approximately 635°C using Larson-Miller parameter. M 23 C 6 type carbides and VX type carbonitrides were observed on the lath boundary of the modified steel. The stability of these precipitates in the modified steel is likely to suppress the degradation of the long term creep strength at 650°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 637-647, October 22–25, 2013,
... Abstract Recovery of microstructure and void formation were investigated in creep-ruptured specimens of ASME Gr. T91 steels to understand the cause of loss of creep rupture ductility in the long-term creep condition and its heat-to-heat variation. The specimens studied were two heats (MGA, MGC...
Abstract
View Papertitled, Heat-to-Heat Variation in <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Ductility of ASME Gr.91 Steels in the Long-Term-Investigation into Recovery of Microstructure and Void Formation
View
PDF
for content titled, Heat-to-Heat Variation in <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Ductility of ASME Gr.91 Steels in the Long-Term-Investigation into Recovery of Microstructure and Void Formation
Recovery of microstructure and void formation were investigated in creep-ruptured specimens of ASME Gr. T91 steels to understand the cause of loss of creep rupture ductility in the long-term creep condition and its heat-to-heat variation. The specimens studied were two heats (MGA, MGC) of Gr. T91 steels creep-ruptured at 600 °C under the stress conditions of 160-80 MPa. The reduction of area at rupture (RA) was 55% for MGA, but 83% for MGC in the long-term condition (under the creep stress of 80 MPa), while RA was higher than 80 % for the two heats in the short-term conditions (under the creep stresses above 100 MPa). In both heats, equiaxed grains were observed in the vicinity of ruptured surface in the long-term condition, indicating that recovery and recrystallization occurred extensively in the creep condition, while grains were elongated in the short-term conditions. In the uniformly deformed regions with a small area reduction in the long-term crept specimens, recovered and recrystallized grains were observed in the limited region close to high angle grain boundaries in MGA, while they were extended into grain interiors in MGC. In the long-term creep conditions two types of voids were observed: fine ones with a diameter below 1 μm and coarse ones with a diameter from 2 μm up to 50 μm. Fine creep voids were found to grow with necking in MGA while they neither nucleated nor grew with necking in MGC. Coarse creep voids increased in size and in number with necking in both heats and were larger and denser in MGA than in MGC.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 732-743, October 22–25, 2013,
... Abstract Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four...
Abstract
View Papertitled, Evaluation of Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
View
PDF
for content titled, Evaluation of Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Life of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four regions with different values of stress exponent n for creep rupture life commonly in stress-rupture data of the three ferritic steels. Activation energies Q for rupture life in the regions take at least three different values. The values of n and Q decrease in a longer-term region. The decrease in Q value is the cause of the overestimation of long-term rupture life predicted by the conventional TTP methods neglecting the change in Q value. Therefore, before applying a TTP method creep rupture data should be divided into several data sets so that Q value is unique in each divided data set. When this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 903-913, October 22–25, 2013,
... as candidate materials for piping and superheater/reheater tubes in an A-USC boiler. Weldments of these alloys were manufactured by GTAW, after which long term creep rupture tests were conducted at 700°C, 750°C and 800°C. Weldments of HR6W, HR35 and Alloy617 showed similar creep strength as compared...
Abstract
View Papertitled, Evaluation of <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength in Ni-Based Alloy Weldments for an Advanced USC Boiler
View
PDF
for content titled, Evaluation of <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength in Ni-Based Alloy Weldments for an Advanced USC Boiler
A Japanese national project has been undertaken since Aug. 2008 with the objective of developing an advanced ultra-supercritical power plant (A-USC) with a steam temperature of 700°C. Fe-Ni and Ni-based alloys, namely HR6W, HR35, Alloy617, Alloy740, Alloy263 and Alloy141, were taken as candidate materials for piping and superheater/reheater tubes in an A-USC boiler. Weldments of these alloys were manufactured by GTAW, after which long term creep rupture tests were conducted at 700°C, 750°C and 800°C. Weldments of HR6W, HR35 and Alloy617 showed similar creep strength as compared with these base metals. Weldments of Alloy740 tended to fail in the HAZ, and it is considered that voids and cracks preferentially formed in the small precipitation zone along the grain boundary in the HAZ. The creep strength of Alloy263 in weldments exhibited the highest level among all the alloys, although HAZ failure occurred in the low stress test condition. A weld strength reduction factor will be needed to avoid HAZ failure in Alloy740 and Alloy263. Also, to prevent premature failure in weld metal, optimization of the chemical composition of weld filler materials will be required.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national...
Abstract
View Papertitled, Verification of Long Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
View
PDF
for content titled, Verification of Long Term <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1407-1416, October 22–25, 2013,
... temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared with those as aged. As a result, USC141 as solution treated exhibited almost as same creep rupture properties as that as aged because precipitation at grain boundaries and in grains gradually increased at testing temperatures around 700°C. Furthermore seamless tubes of USC141 were produced and various properties including creep properties are now being evaluated.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 217-230, October 25–28, 2004,
... ksi) need study. Above 593°C (1050°F) and below 103 MPa (15 ksi), weldments may fail prematurely by Type IV creep mechanism. Long-term creep rupture studies on cross-weld and multiaxially loaded thick-walled specimens should evaluate deteriorated weldment properties, particularly below 103 MPa (15 ksi...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Grade 91 Weldments
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Properties of Grade 91 Weldments
The use of creep strength-enhanced ferritic alloys like Grade 91 has become popular in fossil power plants for applications at temperatures above 566°C (1050°F). Compared to Grades 11 and 22, Grade 91 offers higher stress allowables, better ramp rate tolerance, weight reduction, and lower thermal expansion coefficients at operating temperatures. However, Grade 91's superior elevated temperature strength requires specific microstructure and metallurgical considerations. This paper highlights concerns that warrant further investigation. Initial operating stresses in Grade 91 piping systems may exceed 262 MPa (38 ksi), and lack of creep relaxation below 593°C (1050°F) could lead to weldment failures within years, especially above 159 MPa (23 ksi) after one year. While cold spring can reduce initial stresses for systems below 593°C (1050°F), creep relaxation rates up to 206 MPa (30 ksi) need study. Above 593°C (1050°F) and below 103 MPa (15 ksi), weldments may fail prematurely by Type IV creep mechanism. Long-term creep rupture studies on cross-weld and multiaxially loaded thick-walled specimens should evaluate deteriorated weldment properties, particularly below 103 MPa (15 ksi).
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1280-1298, October 25–28, 2004,
... Abstract This study examines the influence of carbon and austenite stabilizing elements (Ni, Mn, Co, Cu) on Laves phase precipitation, Fe 2 W formation, and creep rupture strength (CRS) in 9-12% Cr steels at 600-700°C. Nickel and manganese had minimal impact on Laves phase and coarse carbide...
Abstract
View Papertitled, The Effects of Carbon and Austenite Stabilizing Elements (Co, Cu, Ni and Mn) on the Microstructural Changes and the <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength in 9-12 % Cr Ferritic Heat Resistant Steels
View
PDF
for content titled, The Effects of Carbon and Austenite Stabilizing Elements (Co, Cu, Ni and Mn) on the Microstructural Changes and the <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength in 9-12 % Cr Ferritic Heat Resistant Steels
This study examines the influence of carbon and austenite stabilizing elements (Ni, Mn, Co, Cu) on Laves phase precipitation, Fe 2 W formation, and creep rupture strength (CRS) in 9-12% Cr steels at 600-700°C. Nickel and manganese had minimal impact on Laves phase and coarse carbide formation up to 1% content. While cobalt increased Laves phase fraction at 650°C, it did not improve long-term CRS and even caused a rapid decrease in short-term CRS. Copper, on the other hand, promoted the precipitation of fine Cu-rich particles that acted as nucleation sites for Laves phase and M 23 C 6 carbide. This resulted in a different needle-like Laves phase morphology compared to the globular type observed in nickel and cobalt alloys, leading to improved CRS in the copper alloy. Increasing carbon content from 0.1% to 0.2% effectively suppressed Laves phase formation, as confirmed by Thermo-Calc calculations. Notably, for cobalt alloys with higher tungsten content, higher carbon content (0.09% to 0.19%) improved CRS at 650°C, whereas the opposite effect was observed in nickel and nickel-manganese alloys. Copper alloys maintained improving CRS trends even with increased carbon, leading to the overall best CRS performance among the tested alloys with 0.2% carbon.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 408-422, August 31–September 3, 2010,
... Abstract 10CrMoWVNbN (X 12 CrMoWVNbN 10 1 1) steel trial forgings has been manufactured to clarify the effect of austenitizing temperature on the creep rupture strength and microstructure. From the results of creep rupture tests up to 30,000 hours, higher austenitizing temperature improves...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Microstructural Investigation of 12 % Cr Steel Large Forgings for Ultra-Supercritical Steam Turbine Rotors
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Rupture</span> Strength and Microstructural Investigation of 12 % Cr Steel Large Forgings for Ultra-Supercritical Steam Turbine Rotors
10CrMoWVNbN (X 12 CrMoWVNbN 10 1 1) steel trial forgings has been manufactured to clarify the effect of austenitizing temperature on the creep rupture strength and microstructure. From the results of creep rupture tests up to 30,000 hours, higher austenitizing temperature improves the rupture strength without large degradation of the rupture ductility. The microstructural investigations demonstrate that the prior austenite grain size and the precipitation behavior of fine M2X particles are presumed to contribute to the improvement of creep rupture strength.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 705-714, August 31–September 3, 2010,
... demonstrates that C-values vary both between steel types and across stress regions. The new approach enables prediction of long-term (10 5 hours) creep rupture properties using only short-term (5×10 3 hours) test data, while d[g(σ)]/d[P(t r ,T)] versus P(t r ,T) analysis provides insight into property...
Abstract
View Papertitled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Property Assessment for 9-12% Cr Ferritic Heat-Resistant Steels
View
PDF
for content titled, <span class="search-highlight">Creep</span>-<span class="search-highlight">Rupture</span> Property Assessment for 9-12% Cr Ferritic Heat-Resistant Steels
A new methodology challenges the conventional use of a constant C-value in the Larson-Miller Parameter (LMP) for 9-12% Cr ferritic steels, proposing instead a multi-C region analysis to address creep strength breakdown issues. Using NIMS data and other publications, the study demonstrates that C-values vary both between steel types and across stress regions. The new approach enables prediction of long-term (10 5 hours) creep rupture properties using only short-term (5×10 3 hours) test data, while d[g(σ)]/d[P(t r ,T)] versus P(t r ,T) analysis provides insight into property stability. This methodology offers a more cost-effective and accurate approach to acquiring and assessing long-term creep rupture data for these heat-resistant steels.
1