Skip Nav Destination
Close Modal
Search Results for
creep resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 474 Search Results for
creep resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
... Abstract The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully...
Abstract
View Paper
PDF
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 620-639, August 31–September 3, 2010,
... resistance and long-term creep rupture strength, particularly in welded joints where resistance to Type IV cracking is critical for constructing thick-section boiler components. The current research aims to investigate the creep deformation behavior and microstructure evolution during creep for base metals...
Abstract
View Paper
PDF
In advanced ultra-supercritical (A-USC) power plants, which operate at steam temperatures of 700 °C or higher, there is a need to replace 9 to 12Cr martensitic steels with high-strength nickel-base superalloys or austenitic steels for components exposed to the highest temperatures. However, due to the high cost of nickel-base superalloys, it is desirable to use 9 to 12% Cr martensitic steels for components exposed to slightly lower temperatures, ideally expanding their use up to 650 °C. Key challenges in developing ferritic steels for 650 °C USC boilers include enhancing oxidation resistance and long-term creep rupture strength, particularly in welded joints where resistance to Type IV cracking is critical for constructing thick-section boiler components. The current research aims to investigate the creep deformation behavior and microstructure evolution during creep for base metals and heat-affected-zone (HAZ) simulated specimens of tempered martensitic 9Cr steels, including 9Cr-boron steel and conventional steels like grade 91 and 92. The study discusses the creep strengthening mechanisms and factors influencing creep life. It proposes an alloy design strategy that combines boron strengthening and MX nitride strengthening, avoiding the formation of boron nitrides during normalizing heat treatment, to improve the creep strength of both base metal and welded joints.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
... of creep strength and rupture ductility for long-term. creep deformation creep rupture ductility creep rupture strength creep strength ferritic creep resistant steel martensitic microstructure Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International...
Abstract
View Paper
PDF
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1067-1074, October 11–14, 2016,
... by transmission and scanning electron microscopy. It was shown that superior creep resistance of this steel was attributed to slow increase in creep rate at the first stage of tertiary creep whereas the rapid acceleration of creep rate took place only at the short second stage of tertiary creep. Transition from...
Abstract
View Paper
PDF
A 10%Cr martensitic steel with 3%Co and 0.008%B exhibits extremely long creep rupture time of approximately 40000 h under an applied stress of 120 MPa at a temperature of 650°C. The steel’s microstructure after creep tests interrupted at different creep stages was examined by transmission and scanning electron microscopy. It was shown that superior creep resistance of this steel was attributed to slow increase in creep rate at the first stage of tertiary creep whereas the rapid acceleration of creep rate took place only at the short second stage of tertiary creep. Transition from minimum creep rate stage to tertiary creep was found to be accompanied by coarsening of Laves phase particles, whereas M 23 C 6 – type carbides demonstrated high coarsening resistance under creep condition. Strain-induced formation of Z-phase does not affect the creep strength under applied stress of 120 MPa due to nanoscale size of Z-phase particles.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 586-595, October 22–25, 2013,
... International®. All rights reserved. D. Gandy, J. Shingledecker, editors MISORIENTATION CHANGE CAUSED BY THE PRECIPITATION STRENGTHENING THROUGH SEVERAL MX TYPE PRECIPITATES IN HIGH CR FERRITIC CREEP RESISTANT STEELS Ryosuke Yamagata TOHOKU University, Aoba 6-6-20 Aramaki Aoba-ku Sendai-shi Miyagi, JAPAN...
Abstract
View Paper
PDF
In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference to the creep test and creep interrupting test. VN precipitation increased the creep strength if the content was higher than 0.02%. Simultaneous addition of Nb and V in the specimen resulted in the complex NbC-VN precipitates even in the as-heat-treated specimens. The coherent and fine-needle-type VN was also detected in the steel. These precipitates are expected to increase the creep strength according to the creep strain curves. V variation up to 0.02% did not affect the crystallographic character of the grain boundary in the as-heat-treated specimens. Nb variation affected the crystallographic character of the grain boundary significantly because of the grain refinement effect of NbC. VN precipitation during the creep test restricted the crystallographic misorientation-angle-profile degradation. Integrating all intragranular precipitates, VN, restricts the crystallographic degradation significantly. The long-term creep test results and the precise precipitation analysis will be disclosed by the presentation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
... by the presentation. creep rupture strength creep strain test electron probe X-ray microanalysis ferritic creep resistant steel nitrides normalizing precipitation strengthening solid state nitriding tempering transmission electron microscopy Advances in Materials Technology for Fossil Power Plants...
Abstract
View Paper
PDF
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1163-1172, October 22–25, 2013,
... Abstract 25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment...
Abstract
View Paper
PDF
25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM investigations of aged specimens revealed the presence of six different precipitates: M 23 C 6 , Cr 2 N, sigma, Z-phase, eta-phase (Cr 3 Ni 2 Si(C,N)) and Nb(C,N). These precipitates were predicted and confirmed by MatCalc simulations. The calculated phase fraction and mean radius show good agreement with experimental data. Finally, simulations of different Cr-, C- and N-content in Tp310HCbN were performed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
..., we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep. creep deformation creep rate creep strength creep stress ferritic...
Abstract
View Paper
PDF
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1313-1328, October 22–25, 2013,
..., editors THE CROSS-WELD PERFORMANCE OF 9%CR CREEP-RESISTANT STEELS, AND THE INFLUENCE OF WELDING PARAMETERS John Rothwell TWI Ltd, Great Abington, Cambridgeshire, UK Peter Mayr TU Chemnitz, Chemnitz, Saxony, Germany 1313 ABSTRACT 9-12%Cr martensitic-ferritic steels continue to be developed for target...
Abstract
View Paper
PDF
9-12%Cr martensitic-ferritic steels continue to be developed for target temperatures of 650°C. This paper reviews the performance of two experimental European steels against the performance of the better known grade 92 alloy. It comments on the problem of type IV cracking and the effect of welding variables on cross-weld creep performance. Preliminary results from an on-going creep test programme are presented in context, and the findings compared with published data.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... Abstract This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter...
Abstract
View Paper
PDF
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 899-918, October 25–28, 2004,
... Abstract This paper presents RAFAKO S.A. experience within the field of research and implementation of new group of creep-resistant steel grades with addition of tungsten, including the selection of filler metal, welding procedures and selected results of mechanical properties testing carried...
Abstract
View Paper
PDF
This paper presents RAFAKO S.A. experience within the field of research and implementation of new group of creep-resistant steel grades with addition of tungsten, including the selection of filler metal, welding procedures and selected results of mechanical properties testing carried out during the implementation of welding process for elements of steam superheaters of the boilers with supercritical parameters. It summarizes the experience and results of research works carried out in RAFAKO, Silesian Technical University in Katowice and Welding Institute in Gliwice within the framework of COST 522 program concerning the influence of simulation of element temperature operating conditions on Chaгpy V notch toughness, HV10 hardness, microstructure of simulated HAZ's, assessment of steel weldability, strength properties. The welded joints structure stability and HAZ after stress relief annealing and after ageing - simulation of element operating conditions are presented in the form of graphs and prints of microstructures.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 303-319, October 3–5, 2007,
..., technological properties, and microstructure of welded joints produced at RAFAKO S.A. The extensive research program encompassed a broad range of tests on both parent material and welded joints, including mechanical property assessments at room temperature, creep resistance evaluations, low-cycle fatigue...
Abstract
View Paper
PDF
This paper presents comprehensive test results of thick-walled VM12 steel pipes containing 12% chromium, vanadium, and tungsten, with cobalt addition. The primary objective was to verify welding technologies for boiler superheater thick-walled components and characterize the strength, technological properties, and microstructure of welded joints produced at RAFAKO S.A. The extensive research program encompassed a broad range of tests on both parent material and welded joints, including mechanical property assessments at room temperature, creep resistance evaluations, low-cycle fatigue testing at room temperature and 600°C (1120°F), and detailed macro- and microstructural examinations. Furthermore, the investigation included a comprehensive microstructural stability assessment using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), conducted after fatigue resistance testing at room and elevated temperatures, following additional annealing at 700°C (1,920°F), and after 1,000 hours of exposure for both parent material and welded joints. These investigations were conducted as part of the COST 536 Action, representing a collaborative effort to understand and characterize high-temperature creep-resistant steels like VM12 for advanced power generation applications.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 790-808, October 3–5, 2007,
.../TIG variants and EB welding) appear to provide improved creep performance of weldments. They therefore merit further study, and should be considered for welding the new steel grades, particularly in supercritical and ultra-supercritical applications. chromium steel creep resistance creep...
Abstract
View Paper
PDF
Research on high chromium ferritic materials for high temperature power plant components generally concentrates on the properties of the parent steel. Weldments, however, are often the weak link, leading to premature failures and associated forced outages and high maintenance spend. Clearly, consideration of the creep performance of weld metals and associated heat-affected zones (HAZs) in these materials is important. Despite this, relevant weldment creep rupture data are not commonly available, and weldment creep rupture “strength reduction factors” are not always known. This paper provides comment on the available information on parent materials, and highlights the need for the assessment of the creep performance of weldments. Strategies for increasing HAZ creep rupture strength are reviewed, and some available weldment data are considered. Less conventional welding processes (GTA/TIG variants and EB welding) appear to provide improved creep performance of weldments. They therefore merit further study, and should be considered for welding the new steel grades, particularly in supercritical and ultra-supercritical applications.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 914-926, October 3–5, 2007,
..., the boron-nitrogen balanced 9Cr steel did not develop a fine-grained HAZ. Since Type IV cracking primarily occurs in the FGHAZ, this alloy shows strong potential for eliminating Type IV cracking as a major life-limiting factor in heat-resistant steel weldments. boron alloyed creep resistance boron...
Abstract
View Paper
PDF
In thermal power plants, weldments of all currently used martensitic 9% chromium steels are prone to Type IV cracking in the fine-grained region of the heat-affected zone (HAZ). Japanese researchers have introduced a new martensitic steel for ultra-supercritical (USC) steam conditions that demonstrates resistance to Type IV cracking. This study compares a modified version of this boron-nitrogen balanced advanced 9Cr-3W-3Co steel with CB2, the most promising 9% Cr steel developed through the European research initiative COST, in terms of weldability. The HAZ was analyzed using the "Heat-Affected Zone Simulation" technique with a Gleeble 1500 thermo-mechanical simulator. Basic optical microscopy was complemented by advanced electron microscopy techniques, including energy-filtered TEM (EFTEM), electron energy loss spectroscopy (EELS), electron backscatter diffraction (EBSD), and energy-dispersive X-ray analysis (EDX). Phase transformations in the HAZ were directly observed using in situ X-ray diffraction with synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory, IL, USA. Although both steels exhibited similar transformation behavior, their resulting microstructures after the weld thermal cycle differed significantly. At peak temperatures above 1200°C, delta ferrite formed and remained stable down to room temperature due to rapid cooling in both steels. While CB2 exhibited conventional coarse-grained (CG), fine-grained (FG), and intercritical HAZ regions, the boron-nitrogen balanced 9Cr steel did not develop a fine-grained HAZ. Since Type IV cracking primarily occurs in the FGHAZ, this alloy shows strong potential for eliminating Type IV cracking as a major life-limiting factor in heat-resistant steel weldments.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 147-158, October 15–18, 2024,
... Abstract Increasing the temperature capabilities of ferritic/martensitic 9-12% Cr steels can help in increasing the operating temperature of land-based turbines and minimize the use of expensive high-temperature alloys in the hot section. A creep resistant martensitic steel, JMP, was developed...
Abstract
View Paper
PDF
Increasing the temperature capabilities of ferritic/martensitic 9-12% Cr steels can help in increasing the operating temperature of land-based turbines and minimize the use of expensive high-temperature alloys in the hot section. A creep resistant martensitic steel, JMP, was developed with the potential to operate at or above 650°C. The design of the alloys originated from computational modeling for phase stability and precipitate strengthening using fifteen constituent elements. Cobalt was used for increased solid solution strengthening, Si for oxidation resistance and different W and Mo concentrations for matrix strength and stability. The JMP steels showed increases in creep life compared to MARBN/SAVE12AD at 650°C for testing at various stresses between 138 MPa and 207 MPa. On a Larson-Miller plot, the performance of the JMP steels surpasses that of state-of-the-art MARBN steel. Approximately 21 years of cumulative creep data are reported for the JMP steels which encompasses various compositions. The relationships between composition-microstructure-creep properties are discussed including characterization of microstructures after >20,000 hours in creep.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, October 15–18, 2024,
... presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes...
Abstract
View Paper
PDF
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1250-1261, October 21–24, 2019,
... Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31399/asm.cp.am-epri-2019p1250 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org DEVELOPMENT OF HIGH CREEP RESISTANT 9%CR MARBN...
Abstract
View Paper
PDF
Approximately 75% of the worldwide energy supply is based on fossil energy but the discussions on CO 2 emission require improvements of the conventional power technologies and also an increase of renewable energy resources. Over the past 40 years, enormous efforts, especially in the development of new materials, were made to establish the technology for the ultra-supercritical power plants, which are the standard of today’s power generation. For decades voestalpine Boehler Special Steel has been a full package supplier of customized high quality special steels and forgings with close relationships to plant manufacturers to provide products ahead of their time. This paper reports on improvements and research activities of the currently best available martensitic 9% Cr steel FB2 and the latest generation, the so-called MarBN steels, raising the operating temperatures of the 9% Cr steel class from 620 °C to 650 °C. Increasing the operating temperature requires adaptations in processes and manufacturing methods to adjust optimized microstructures with improved toughness properties and increased creep rupture strength at the same time. The microstructure of two Boron containing 9% Cr steels, FB2-2 and NPM1, developed within the framework of COST / KMM-VIN, have been investigated comparatively after different heat treatments and discussed after creep rupture tests at 650°C. The results show a dependency of the creep rupture strength on the stability of precipitates and the creep rupture time of both steels was increased by more than 30 % without negatively affecting the creep rupture strain and impact values.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 96-103, October 21–24, 2019,
... and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep...
Abstract
View Paper
PDF
To save fossil fuel resources and to reduce CO 2 emissions, considerable effort has been directed toward researching and developing heat-resistant materials that can help in improving the energy efficiency of thermal power plants by increasing their operational temperature and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep tests for 15Cr-1Mo-6W-3Co-V-Nb steels with ferrite matrix strengthened by a mainly Laves phase (Fe 2 W) showed that the creep strengths of 15Cr ferritic steel at temperatures ranging from 923 K to 1023 K were twice as high as those of conventional 9Cr ferric heat-resistant steel. 15Cr steels have higher steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions, especially that of carbon, in order to improve the high-temperature creep strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1352-1362, October 22–25, 2013,
... Abstract In this study, we have examined the creep of a novel austenitic heat resistant steel of Fe-20Cr- 30Ni-2Nb (at.%) steel at 1073K in steam and air atmospheres. Our studied steels were Fe-20Cr- 30Ni-2Nb (base steel) and that with 0.03 at. %B (B-doped steel) . The addition of boron...
Abstract
View Paper
PDF
In this study, we have examined the creep of a novel austenitic heat resistant steel of Fe-20Cr- 30Ni-2Nb (at.%) steel at 1073K in steam and air atmospheres. Our studied steels were Fe-20Cr- 30Ni-2Nb (base steel) and that with 0.03 at. %B (B-doped steel) . The addition of boron is to intentionally increase the area fraction of Laves phase on grain boundaries (ρ). The specimen with ρ = 43% (base steel pre-aged at 1073 K/240 h) exhibits the rupture life of 262 h, whereas the rupture life of the specimen with higher ρ of 80% (B-doped steel pre-aged at 1073 K/240 h) is 833h, which is about three times longer than that of the specimen with ρ = 43%. The specimen with ρ = 80% exhibits smaller creep rate than those with lower ρ than 43% in the entire creep stage. In addition, all specimens show the creep rupture strain of about 60%. The creep rupture life is almost same to that tested under air, whereas the creep rupture strain is slightly smaller (a few percent) than that under air. In the surface of the creep ruptured specimen in steam, the intergranular oxides associated with voids or cavities are often present and grow along grain boundaries to over 100 μm in depth. The intergranular oxidation occurs more extensively in steam rather than air. These results demonstrate that stable Fe 2 Nb Laves phase on grain boundary could increase the creep resistance of the present steel at 1073K without ductility loss in steam as well as air, resulting in the pronounced extension of rupture life. The intergranular oxidation accelerated by steam would not give a serious effect on the creep properties of the present steel below 103 hours in rupture life.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 202-216, October 25–28, 2004,
...-oxidation treatment in argon, significantly improving the oxidation resistance in steam at 650°C. alloy design boilers chromium carbides creep resistance creep strength creep test grain boundaries martensitic microstructure martensitic steel oxidation resistance httpsdoi.org/10.31399...
Abstract
View Paper
PDF
To enhance long-term creep strength at 650°C, stabilization of the lath martensitic microstructure near prior austenite grain boundaries has been investigated for a 9Cr-3W-3Co-0.2V-0.05Nb steel. This was achieved by adding boron to stabilize M 23 C 6 carbides and dispersing fine MX nitrides. Creep tests were conducted at 650°C for up to approximately 3 × 10 4 hours. Adding a large amount of boron exceeding 0.01%, combined with minimized nitrogen, effectively stabilized the martensitic microstructure and improved long-term creep strength. The amount of available boron, free from boron nitrides and tungsten borides, is crucial for enhancing long-term creep strength. Reducing the carbon concentration below 0.02% led to a dispersion of nano-sized MX nitride particles along boundaries and in the matrix, resulting in excellent creep strength at 650°C. A critical issue for the 9Cr steel strengthened by MX nitrides is the formation of Z-phase, which degrades long-term creep strength. Excess nitrogen additions of 0.07 and 0.1% promoted Z-phase formation during creep. The formation of a protective Cr-rich oxide scale was achieved through a combination of Si addition and pre-oxidation treatment in argon, significantly improving the oxidation resistance in steam at 650°C.
1