Skip Nav Destination
Close Modal
Search Results for
creep properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 514
Search Results for creep properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 800-813, February 25–28, 2025,
... direct consequences on the determination of the creep properties that that are based on a single minimum value in the CEN Small Punch Standard. In the paper, aged and nonaged materials are compared, and small punch creep results are also compared with standard uniaxial creep tests. The multiple minima...
Abstract
View Papertitled, The Small Punch <span class="search-highlight">Creep</span> Test: A Tool to Rank and Qualify <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> for the Comparison of Forged and Additive Manufactured 316L Stainless Steels
View
PDF
for content titled, The Small Punch <span class="search-highlight">Creep</span> Test: A Tool to Rank and Qualify <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> for the Comparison of Forged and Additive Manufactured 316L Stainless Steels
There is an increased interest in miniature testing to determine material properties. The small punch test is one miniaturized test method that has received much interest and is now being applied to support the design and life assessment of components. This paper presents the results of a test program for a small punch creep test at 650°C of 316L stainless steel produced from additive manufacturing. A major finding is that the deflection rate curve versus time may have multiple minima as opposed to forged 316L with only one minimum. This is believed to be due to microcracking and has direct consequences on the determination of the creep properties that that are based on a single minimum value in the CEN Small Punch Standard. In the paper, aged and nonaged materials are compared, and small punch creep results are also compared with standard uniaxial creep tests. The multiple minima feature means that the approach to determine equivalent stress and strain rate from the minimum deflection rate needs to be modified. Some approaches for this are discussed in the paper. Under the assumption that the multiple minima represent cracking, it opens up opportunities to quantify reduced creep ductility by the small punch test.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 181-189, October 11–14, 2016,
... Abstract The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep...
Abstract
View Papertitled, Effects of Trace Elements on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Nickel-Iron Base Superalloy
View
PDF
for content titled, Effects of Trace Elements on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Nickel-Iron Base Superalloy
The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep properties of forged samples with seven different compositions were examined. No significant differences were observed in the creep rate versus time curves of the samples, of which contents of magnesium, zirconium, manganese and sulfur were varied. In contrast, the curves of phosphorus-added samples showed very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed that there were fine precipitates consisting of phosphorus and niobium at the grain boundaries. The significant suppression of the creep deformation of phosphorus-added sample may be attributed to the grain boundary strengthening caused by the fine grain boundary precipitates.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 924-935, October 22–25, 2013,
... length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Heat Affected Zone in Heterogeneous Welded Rotor
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Heat Affected Zone in Heterogeneous Welded Rotor
Increasing demand on efficiency and power output of steam generators leads to new designs of welded rotors. The reason for rotor welding is the large size of rotors, which are difficult to produce in a single piece. Secondly, as there are varying operation conditions along the rotor length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties of a heterogeneous weld are subject of the investigation herein the current study, a heterogeneous weld of COST F and COST FB2 materials is investigated. The welding was performed by multi pass technique with overlaying welding beads that applied several heating cycles to heat affected zone. Metallographic investigation of the weld was performed and the weakest microstructure spots were detected. With the use of FEM simulation, appropriate heating/cooling cycles were obtained for the detected weak points. The temperature cycles obtained were subsequently applied to both base materials under laboratory conditions by induction heating. Creep properties of these materials were investigated. The influence of the initial base material’s grain size was also considered in the investigation. Two heating/cooling schedules were applied to both base materials with two grain sizes. Altogether, 8 different microstructures were examined in short term creep tests and the results were summarized.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1160-1167, October 25–28, 2004,
... Abstract Effect of thermomechanical and magnetic treatment on creep characteristics of advanced heat resistant ferritic steels for USC power plants has been investigated to explore fundamental guiding principles for improving creep rupture strength at elevated temperatures over 600°C. A model...
Abstract
View Papertitled, Effects of a New Thermo-mechanical Magnetic Heat Treatment Process on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of High-Cr Ferritic Heat Resistant Steels
View
PDF
for content titled, Effects of a New Thermo-mechanical Magnetic Heat Treatment Process on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of High-Cr Ferritic Heat Resistant Steels
Effect of thermomechanical and magnetic treatment on creep characteristics of advanced heat resistant ferritic steels for USC power plants has been investigated to explore fundamental guiding principles for improving creep rupture strength at elevated temperatures over 600°C. A model steel with a composition of Fe-0.08C-9Cr-3.3W-3Co-0.2V-0.05Nb-0.05N-0.005B-0.3Si-0.5Mn (in mass%) has been prepared by vacuum induction furnace. Creep tests at 650 °C and microstructural observations were performed on the thermomechanical and magnetic treated specimens after tempering. New thermomechanical treated samples without magnetic field showed some improvement in creep strength comparing with ordinarily normalized and tempered specimens. Further improvement was observed in the specimen that had been exposed to a magnetic field during transformation into the martensite. From the result of microstructural observation, it was found that the finely distributed precipitates such as MX and M 23 C 6 caused this improvement. And it was suggested that the magnetic treatment at martensitic transformation increase the precipitation sites during tempering, resulting in increasing the amount and preventing the growth of the precipitates.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
... the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel...
Abstract
View Papertitled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
View
PDF
for content titled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 164-170, August 31–September 3, 2010,
... Abstract The effects of pre-strain on creep properties of Alloy 740 have been investigated. Tensile strain was 7.5% and introduced by room temperature tensile test. Creep tests were conducted under 750 degree C, 275-350MPa. Creep rupture life of pre-strained sample decreased by half compared...
Abstract
View Papertitled, Effect of Pre-Strain on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Alloy 740
View
PDF
for content titled, Effect of Pre-Strain on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Alloy 740
The effects of pre-strain on creep properties of Alloy 740 have been investigated. Tensile strain was 7.5% and introduced by room temperature tensile test. Creep tests were conducted under 750 degree C, 275-350MPa. Creep rupture life of pre-strained sample decreased by half compared with as-heat treated sample. Creep behaviors of both samples were almost similar in primary creep stage, but onset of creep rate acceleration of pre-strained sample was faster than those of as-heat treated sample. As a result, minimum creep rate of pre-strained sample were two times larger than that of as-heat treated sample. From the observation of ruptured specimen, pre-strained sample had much more sub cracks than as-heat treated sample. On the other hand, microstructure of both samples was also different. There were MC precipitates on grain boundary in both ruptured specimens, but both size and number of MC precipitates were larger in pre-strained sample although creep life of pre-strained sample was shorter than that of as-heat treated sample. In this paper, the difference of creep behavior will be discussed in terms of both the microstructural change and mechanical damage.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 933-948, August 31–September 3, 2010,
... steel bending boilers cold working creep properties pressure vessels solution treatment strain induced hardening Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International Conference August 31 September 3, 2010, Santa Fe, New Mexico, USA httpsdoi.org...
Abstract
View Papertitled, Strain Induced Hardening of Advanced Austenitic Stainless Steels Evaluation of <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span>
View
PDF
for content titled, Strain Induced Hardening of Advanced Austenitic Stainless Steels Evaluation of <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span>
Cold working and bending during boiler manufacturing can induce strain hardening in austenitic stainless steel, potentially compromising creep ductility and leading to premature failures during operation. While design codes like ASME I, PG 19 provide guidelines for maximum strain levels before solution treating is required, industry concerns suggest these limits may be too high, prompting some boiler manufacturers to implement more conservative thresholds. This study examined the creep ductility of four austenitic stainless steels (TP310HCbN, XA704, TX304HB, and Sanicro 25) at prior strain levels of 12% and 15%, with Sanicro 25 demonstrating the highest ductility, followed by TX304HB, XA704, and TP310HCbN. Solution annealing successfully restored creep ductility to exceed 10% elongation in all materials, though this treatment may be necessary at strains of 12% and 15% for all materials except Sanicro 25 to ensure adequate creep ductility. The findings suggest that ASME I PG 19 guidelines for austenitic stainless steels containing Cb, V, and N should be reviewed, as lower strain limits could help reduce strain-induced precipitation hardening failures.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 119-128, October 3–5, 2007,
... Abstract Various carbon and nitrogen free martensitic alloys were produced for the application which required long time creep properties at high temperatures. But they were easy transformed to austenite phase before the creep tests because of low Ac1 temperature. In this paper, a new attempt...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Carbon and Nitrogen Free Austenitic Alloys for USC Power Plants
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Carbon and Nitrogen Free Austenitic Alloys for USC Power Plants
Various carbon and nitrogen free martensitic alloys were produced for the application which required long time creep properties at high temperatures. But they were easy transformed to austenite phase before the creep tests because of low Ac1 temperature. In this paper, a new attempt has been demonstrated using carbon and nitrogen free austenitic alloys strengthened by intermetallic compounds. We choose Fe-12Ni-9Co-10W-9Cr-0.005B based alloy. Furthermore, we discussed about creep characteristics among the wide range of the testing conditions more over 700°C and steam oxidation resistance to confirm the possibility of the alloys for the future USC power plants under the severe environments.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
... evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants. chromium-nickel-tungsten alloys creep rupture strength creep test Laves...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
The development of materials technologies for piping and tubing in advanced ultrasupercritical (A-USC) power plants operating at steam temperatures above 700°C represents a critical engineering challenge. The 23Cr-45Ni-7W alloy (HR6W), originally developed in Japan as a high-strength tubing material for 650°C ultra-supercritical (USC) boilers, was systematically investigated to evaluate its potential for A-USC plant applications. Comparative research with γ-strengthened Alloy 617 revealed that the tungsten content is intimately correlated with Laves phase precipitation and plays a crucial role in controlling creep strength. Extensive creep rupture tests conducted at temperatures between 650-800°C for up to 60,000 hours demonstrated the alloy's long-term stability, with 105-hour extrapolated creep rupture strengths estimated at 88 MPa at 700°C and 64 MPa at 750°C. Microstructural observations after creep tests and aging confirmed the material's microstructural stability, which is closely linked to long-term creep strength and toughness. While Alloy 617 exhibited higher creep rupture strength at 700 and 750°C, the materials showed comparable performance at 800°C. Thermodynamic calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 185-196, October 3–5, 2007,
... revealing their remarkable performance. The paper provides an up-to-date analysis of the long-term creep rupture properties and microstructural changes of these steels following extended creep rupture and aging processes, highlighting their successful application as standard materials for superheater...
Abstract
View Papertitled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> and Microstructure of Super304H, TP347HFG and HR3C for Advanced USC Boilers
View
PDF
for content titled, Long-Term <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> and Microstructure of Super304H, TP347HFG and HR3C for Advanced USC Boilers
SUPER304H (18Cr-9Ni-3Cu-Nb-N, ASME CC2328) and TP347HFG (18Cr-12Ni-Nb, ASME SA213) are advanced fine-grained microstructure steel tubes developed for high strength and superior steam oxidation resistance. Their exceptional performance is demonstrated by the longest creep rupture tests, with SUPER304H tested at 600°C for 85,426 hours and TP347HFG at 700°C for 55,858 hours, both maintaining stable strength and microstructure with minimal σ phase formation and absence of other brittle phases compared to conventional austenitic stainless steels. HR3C (25Cr-20Ni-Nb-N, ASME CC2115) was specifically developed for high-strength, high-corrosion-resistant steel tubes used in severe corrosion environments of ultra-supercritical (USC) boilers operating at steam temperatures around 600°C. The longest creep test for HR3C, conducted at 700°C and 69 MPa for 88,362 hours, confirmed its high and stable creep strengths and microstructural integrity across the 600-800°C temperature range. These innovative steel tubes have been successfully installed in the Eddystone No. 3 USC power plant as superheater and reheater tubes since 1991, with subsequent microstructural investigations after long-term service exposure revealing their remarkable performance. The paper provides an up-to-date analysis of the long-term creep rupture properties and microstructural changes of these steels following extended creep rupture and aging processes, highlighting their successful application as standard materials for superheater and reheater tubes in newly constructed ultra-supercritical boilers worldwide.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 281-292, October 3–5, 2007,
..., this paper presents creep data of these steels found in the literature in terms of Larson-Miller parameters (LMP). A detailed account of plausible creep micromechanisms in these advanced steels is also be summarized. austenitic stainless steel creep properties alloy design ferritic stainless steel...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Advanced Steels for High Efficiency Power Plants
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Advanced Steels for High Efficiency Power Plants
Driven mainly by the environmental and economic concerns, there is an urgent need for increasing the thermal efficiency of fossil fuel power generation plants, which still languishes at around 32% under current practices. Several programs have been undertaken worldwide to address this issue. One of the immediate options is to increase the steam temperature and pressure (to the supercritical range). However, the current power plant materials appear to have inadequate creep resistance under these demanding conditions along with corrosion/oxidation problems. Hence, to meet these challenges a variety of new steels and stainless steels have been developed in the United States, Japan, and Europe. Alloy design and microstructural design approaches in developing these alloys (ferritic/martensitic, austenitic and oxide-dispersion- strengthened steels) will be briefly reviewed. Further, this paper presents creep data of these steels found in the literature in terms of Larson-Miller parameters (LMP). A detailed account of plausible creep micromechanisms in these advanced steels is also be summarized.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
...-epri-2019p0174 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org INFLUENCE OF MICROSTRUCTURE ON THE CREEP PROPERTIES OF GRADE P22 STEEL S von Willingh, RD Knutsen and RJ Curry EPPEI Materials and Mechanics, Centre for Materials Engineering, Department of Mechanical...
Abstract
View Papertitled, Influence of Microstructure on the <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Grade P22 Steel
View
PDF
for content titled, Influence of Microstructure on the <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of Grade P22 Steel
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1216-1227, February 25–28, 2025,
... Abstract The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding...
Abstract
View Papertitled, Effects of Chemical Composition and Heat Treatment on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of ASME Grade 91 Type Steel
View
PDF
for content titled, Effects of Chemical Composition and Heat Treatment on <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of ASME Grade 91 Type Steel
The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding chemical composition, only the Al, Cr, and Ni contents were systematically varied while keeping the contents of the other elements and heat treatment conditions constant. Regarding heat treatment, the normalizing and tempering temperatures were varied while keeping the contents of chemical components constant. The creep tests of materials were performed for approximately up to 50,000 h at 650°C. The creep strength of Grade 91 type steel decreased with increasing Al content under the test conditions of short-term to long-term range. On the other hand, the effect of Cr content on the creep life of Grade 91 type steel depended on the stress or time range, and the creep strength of the steel decreased at high Cr contents under test conditions of only the longterm range. No effect of Ni content on the creep life of the materials was observed in the test data obtained in this study. As creep tests are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment, the creep life of the materials tended to increase with increasing normalizing temperature or decreasing tempering temperature. The results obtained in this work indicate that within the scope of the material standards for Grade 91 type steel, the effect of chemical composition on creep life is greater than that of heat treatment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1300-1312, February 25–28, 2025,
... Abstract This study investigates the influences of product chemistry and grain size on the high-temperature creep properties of 316 stainless steels by analyzing an extensive range of historical and modern literature data. The investigated 316 stainless steel creep property dataset, including...
Abstract
View Papertitled, Statistical Analysis and Effect of Product Chemistry and Grain Size on the High Temperature <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of 316 Stainless Steels
View
PDF
for content titled, Statistical Analysis and Effect of Product Chemistry and Grain Size on the High Temperature <span class="search-highlight">Creep</span> <span class="search-highlight">Properties</span> of 316 Stainless Steels
This study investigates the influences of product chemistry and grain size on the high-temperature creep properties of 316 stainless steels by analyzing an extensive range of historical and modern literature data. The investigated 316 stainless steel creep property dataset, including more than 160 heats and 2,400 creep testing data, covers a wide spectrum of elemental compositions and product forms. To perform a prudent analysis of the creep property dataset, a statistical overview was first implemented to understand the data distribution relevant to data sources, chemistries, product forms, testing temperatures, and grain sizes. The creep data of 550°C, 600°C, 650°C, 700°C, and 750°C with ±10°C were grouped together, and the analytical study was performed on each sub dataset to investigate the temperature-specific creep performance. The creep strength was evaluated using the average stress ratio (ASR) between the experimental and predicted creep data of tested 316SS heats. The influence of composition and grain size on the creep strength ratio were evaluated using linear correlation analysis. Effects of specified and non-specified elements including C, N, and B were specifically investigated to understand their impacts on the creep strength with regards to the variation of creep temperature. In addition to the literature data, the most recent EPRI creep data of three commercial heats were used to validate the correlations from the historical creep property dataset.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 561-572, February 25–28, 2025,
... dissimilar weld joints used welding rods similar in chemical composition to T23, and significant hardness reduction occurred in the flame-affected zone. austenitic stainless steel coal-fired boilers creep properties creep test dissimilar weld joints ferritic stainless steel hardness analysis...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> <span class="search-highlight">Property</span> of Long-term Service Exposed T23-347H Dissimilar Welded Joint
View
PDF
for content titled, <span class="search-highlight">Creep</span> <span class="search-highlight">Property</span> of Long-term Service Exposed T23-347H Dissimilar Welded Joint
This study conducted creep tests, microstructural, and hardness analyses on SA213T23-TP347H dissimilar weld joints of long-term serviced coal-fired boiler final superheater tube. The welded joint (SA213 T23-TP347H) of the superheater tube, after approximately 105,000 hours of service, was sampled for creep life assessment and maintenance planning. Creep tests were conducted at 600°C under three stress conditions: 100, 140, and 160MPa. Most cracks were observed in the heat-affected zone of T23, and compared to unused tubes, the creep life consumption rate was approximately 90%. All dissimilar weld joints used welding rods similar in chemical composition to T23, and significant hardness reduction occurred in the flame-affected zone.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1407-1416, October 22–25, 2013,
... by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
View
PDF
for content titled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared with those as aged. As a result, USC141 as solution treated exhibited almost as same creep rupture properties as that as aged because precipitation at grain boundaries and in grains gradually increased at testing temperatures around 700°C. Furthermore seamless tubes of USC141 were produced and various properties including creep properties are now being evaluated.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1289-1299, February 25–28, 2025,
... Abstract Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Deformation and Rupture <span class="search-highlight">Properties</span> of Long-Term Used Super 304H Steel Boiler Tubes
View
PDF
for content titled, <span class="search-highlight">Creep</span> Deformation and Rupture <span class="search-highlight">Properties</span> of Long-Term Used Super 304H Steel Boiler Tubes
Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated. Creep tests were conducted at 650°C and 700°C using standard and miniature specimens taken from the axial and circumferential directions of tubes, and effects of specimen size, sampling direction and position on creep properties were discussed. Creep deformation of long-term used materials with significant microstructural evolution accelerated earlier than that of virgin material, and the time to creep rupture and the fracture ductility were also smaller. The degradation of rupture properties of the long-term used material was discussed in relation with microstructural evolution. In addition, there was little effects of specimen size and sampling direction on creep deformation and rupture time, whereas the time to creep rupture changed significantly due to the sampling position.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 582-591, February 25–28, 2025,
... Abstract In this paper, the dissimilar metal welds (DMWs) between 617B nickel-based alloy and 10%Cr martensitic heat-resistant steel filled by 617 filler metal was studied, focused on the high temperature creep rupture properties. The high temperature creep rupture properties of welded joints...
Abstract
View Papertitled, Study on <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Inconel 617B and 10%Cr Steel Dissimilar Metal Weld
View
PDF
for content titled, Study on <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Inconel 617B and 10%Cr Steel Dissimilar Metal Weld
In this paper, the dissimilar metal welds (DMWs) between 617B nickel-based alloy and 10%Cr martensitic heat-resistant steel filled by 617 filler metal was studied, focused on the high temperature creep rupture properties. The high temperature creep rupture properties of welded joints with different welding processes were tested, and the microstructure of welded joints before and after the creep rupture test was observed by OM and SEM. The results showed that, there were three failure modes: base metal failure, type W failure and interface failure, among which interface failure caused the most serious life reduction. The welded joints using ER NiCr-3 filler metal reduced the strain concentration at the interface, so the fracture location shifted from the interface to HAZ of 10%Cr martensitic heat-resistant steel under high temperature and low stress conditions, and creep rupture life was improved. Similarly, weld cap shifted the creep crack propagation path by changing the groove form, so as to altered the stress state of joint and prolong the creep rupture life.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 962-971, August 31–September 3, 2010,
... Abstract HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of HR6W for Advanced-USC Boilers
View
PDF
for content titled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of HR6W for Advanced-USC Boilers
HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for A-USC plant application. The deterioration of long term creep rupture strength has been reported with respect to metastable authentic stainless steel due to cold working. However the creep strength of the 20% pre-strained HR6W increased. HR6W creep strength showed notch strengthening behavior. The creep ruptured strength of the GTAW joints was nearly the same as that of the solution treated material, and all specimens fractured within the base metal. The creep ductility of the solution treated materials decreased under low stress conditions. The intergranular fracture is considered to be caused of ductility drop. This tendency is the same as for austenitic stainless steel. The potential of HR6W as a material for A-USC was revealed from the standpoint of creep rupture properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
... softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface. brittle fracture creep rupture properties creep test heat affected zone martensitic stainless steel micro-hardness microstructure...
Abstract
View Papertitled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
View
PDF
for content titled, <span class="search-highlight">Creep</span> Rupture <span class="search-highlight">Properties</span> of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
1