Skip Nav Destination
Close Modal
Search Results for
creep lifetime assessment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 58 Search Results for
creep lifetime assessment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
... plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC...
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 690-701, October 22–25, 2013,
... Abstract Type IV damage was found at several ultra-supercritical (USC) plants that used creep-strength-enhanced ferritic (CSEF) steels in Japan, and the assessment of the remaining life of the CSEF steels is important for electric power companies. However, there has been little research...
Abstract
View Paper
PDF
Type IV damage was found at several ultra-supercritical (USC) plants that used creep-strength-enhanced ferritic (CSEF) steels in Japan, and the assessment of the remaining life of the CSEF steels is important for electric power companies. However, there has been little research on the remaining life of material that has actually served at a plant. In this study, the damage and remaining life of a Gr.91 welded elbow pipe that served for 54,000 h at a USC plant were investigated. First, microscopic observation and hardness testing were conducted on specimen cut from the welded joint; the results indicated that the damage to the elbow was more severe in the fine-grain heat-affected zone near the inner surface. Furthermore, creep rupture tests were performed using specimens cut from the welded joint of the elbow, and from these results, the remaining life was evaluated using the time fraction rule as almost 110,000 h. Finite-element analysis was also conducted to assess the damage and remaining life, and the results were compared with the experimental results.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
... and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic...
Abstract
View Paper
PDF
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, October 15–18, 2024,
.... The approach is based on a validated high-temperature creep model, detailed in a complementary paper titled An Engineering Approach for Weld Creep Lifetime Assessment Based on Local Property Measurement in the same proceedings. Built based on the local property measurement, the model has been demonstrated...
Abstract
View Paper
PDF
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, October 15–18, 2024,
... 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two...
Abstract
View Paper
PDF
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 429-440, October 15–18, 2024,
... Calculation Methods , Final Report MPA Stuttgart, June 2022 [6] Riedel, H., G. Maier, H. Oesterlin, A lifetime model for creep-fatigue interaction with applications to the creep resistant steel P92 , International Journal of Fatigue 150, 106308, 2021 [7] Bender, T., A. Klenk and S.Weihe: Damage Assessment...
Abstract
View Paper
PDF
This paper reports on the latest in a series of projects aiming at the qualification of new and proven materials in components under a severe service environment. In the initial stages of the project (HWT I & HWT II), a test loop at Unit 6 of the GKM Power Plant in Mannheim was used to study the behavior of components for advanced ultra-supercritical (A-USC) plants made from nickel alloys at 725 °C under both static and fluctuating conditions. Due to recent changes in the operation modes of existing coal-fired power plants, the test loop was modified to continue operating the existing nickel components in the static section while applying thermal cycles in a different temperature range. HR6W pipes and valves were added to the bypass of the static section, and all components in the cyclic section were replaced with P92, P93, and HR6W components. The test loop achieved approximately 9000 hours of operation and around 800 cycles with holding times of 4 and 6 hours. After dismantling the loop, nondestructive and destructive examinations of selected components were conducted. The accompanying testing program includes results from thermal fatigue, fatigue, thermal shock, and long-term creep tests, focusing on the behavior of base materials and welds, particularly for HR6W, P92, P93, and other nickel-based alloys. Additionally, test results on dissimilar welds between martensitic steel P92 and nickel alloys A617 and HR6W are presented. Numerical assessments using standardized and numerical lifetime estimation methods complement the investigations. This paper provides insights into the test loop design and operational challenges, material behavior, and lifetime, including advanced numerical simulations and operational experiences with valves, armatures, piping, and welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 247-259, October 11–14, 2016,
... Evolution in Advanced Boiler Materials for Ultra-Supercritical Coal Power Plants , PhD thesis, University of Cincinnati, USA, 2006. [13] Oesterlin, H., Maier, G., Numerical assessment of thick walled power plant components under creep fatigue load with advanced models for deformation and lifetime...
Abstract
View Paper
PDF
A material test loop has been installed at GKM Mannheim, which enables thick-walled components of future highly-efficient power plants to be exposed to steam temperatures of up to 725 °C. The project goal was to demonstrate the feasibility of a 700 °C power plant.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 653-671, October 25–28, 2004,
... components. This includes gathering creep, creep-fatigue, and crack data to establish design curves, as well as advanced modeling to predict deformation and lifetime. Complex experiments under various loading conditions and multiaxial behavior are necessary for verification. Furthermore, understanding how...
Abstract
View Paper
PDF
New martensitic steels (9-10 CrMoNi(W)VNbN) are being developed for ultrasupercritical power plants to achieve higher efficiency and reduced environmental impact. Improved life assessment methods are crucial for the safe and economical long-term operation of these high-temperature components. This includes gathering creep, creep-fatigue, and crack data to establish design curves, as well as advanced modeling to predict deformation and lifetime. Complex experiments under various loading conditions and multiaxial behavior are necessary for verification. Furthermore, understanding how creep processes affect pre-existing defects is essential for ensuring long-term component integrity.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, October 15–18, 2024,
... of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which...
Abstract
View Paper
PDF
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 945-959, October 15–18, 2024,
... strongly affect the creep behavior. This raises concerns particularly for thin-sectioned components such as compact heat exchangers, where even small rates of carburization can become problematic over long operating lifetimes. To shed light on this issue, this research investigates the creep behavior...
Abstract
View Paper
PDF
Steels have a proven track record of safe operation in steam power plants for decades. Interest in developing supercritical CO 2 power cycles as a more efficient and sustainable alternative to steam cycles has driven a need to understand steel performance in these new environments. In particular, the potential of the high temperature CO 2 environment to influence the creep behavior of the steel must be determined. Prior research on this topic between the 1960s and 1980s found conflicting conclusions, but nevertheless raised the possibility that carburization during CO 2 exposure may strongly affect the creep behavior. This raises concerns particularly for thin-sectioned components such as compact heat exchangers, where even small rates of carburization can become problematic over long operating lifetimes. To shed light on this issue, this research investigates the creep behavior of austenitic stainless steel 347H and 309H (a higher Cr alternative) at 650°C. Specimens of 0.5, 1.0, and 2.0 mm thickness were tested to further assess the effect of steel thickness. Both steels show a reduction in creep life in CO 2 relative to air, with 309H showing slightly better performance than 374H. Analysis is ongoing to determine the reason for degraded creep properties.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, October 15–18, 2024,
... replacement were in -service for141,000 hours at a bulk steam outlet temperature of 568 °C. Remaining lifetime of these two service-aged steels was assessed using creep tests integrated with an in-situ digital image correlation (DIC) system. Their performance was correlated with the documented in-service...
Abstract
View Paper
PDF
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 62-73, October 15–18, 2024,
... of environmental contaminants even when tested in the upgraded argon system, leading to enhanced creep strength but reduced ductility. This testing underlines the necessity for high vacuum testing to minimize such contamination and obtain more accurate assessments of Nb-based alloys like C-103. In contrast, MHC...
Abstract
View Paper
PDF
Gas turbine efficiency is typically limited by the maximum allowable temperature for components at the inlet side and in the hot gas flow. Refractory alloys and SiC/SiC ceramic-matrix composites (CMCs) are promising candidates for advancing operating temperatures beyond those of Ni-based alloys (>1200 °C). Refractory alloys are more suitable than SiC/SiC CMCs for dynamic components, due to the latter's low toughness and ductility. However, it is well known that refractory alloys suffer from poor oxidation behavior under service lifetimes and conditions, leading to embrittlement concerns. The ARPA-E ULTIMATE program has set out to combine new alloys with advanced coatings to mitigate oxidation/embrittlement effects, while increasing the mechanical performance benefits of refractory materials. Low oxygen (inert gas) or vacuum systems are needed to assess high temperature mechanical performance of developed alloys. To investigate the environmental sensitivity of candidate alloys and develop high temperature testing capabilities, four argon tensile frames were upgraded as well as a single vacuum system at Oak Ridge National Laboratory. Digital image correlation was incorporated into the vacuum frame allowing for surface strain determination and refined insight into thermomechanical response. Creep testing was performed at 1300 °C on two alloys, C-103 and MHC in vacuum and high purity argon environments. The Mo-based alloy showed less sensitivity to oxygen, indicating that testing in well-controlled argon environments may be suitable. The C-103 alloy demonstrated a stronger sensitivity to oxygen in the well-controlled argon environment, illustrating the need for the developed vacuum testing capabilities. “Small” 25 mm and “large” 76 mm MHC specimens showed comparable results in terms of strain rate during creep testing and ultimate tensile strength during tensile testing, suggesting the viability of smaller geometries that use less material of advanced developmental alloys.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 679-689, October 22–25, 2013,
... lifetime (tCF) and corresponding number of cycles to failure (NCF) are predicted utilizing the creep rupture properties and the ultimate tensile strength of the material [7]. When using a creep model for assessing creep-fatigue data, the selected model should have good predictive capability both in short...
Abstract
View Paper
PDF
The creep-fatigue properties of modified 9Cr-1Mo (grade 91) steel have been investigated for the purpose of design in cyclic service. In this paper test results from creep-fatigue (CF) and low cycle fatigue (LCF) on grade 91 steel are reported. The tests performed on the high precision pneumatic loading system (HIPS) are in the temperature range of 550-600ºC, total strain range of 0.7-0.9% and with hold periods in both tension and compression. Curves of cyclic softening and stress relaxation are presented. The CF test results and results obtained from literature are also analysed using methods described in the assessment and design codes of RCC-MRx, R5 and ASME NH as well as by the recently developed Φ-model. It is shown that the number of cycles to failure for CF data can be accurately predicted by the simple Φ-model. The practicality in using the life fraction rule for presenting the combined damage is discussed and recommendations for alternative approaches are made.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
... to a defined purpose. Figure 3.1. Short overview of modeling possibilities 606 Definition of a constitutive creep law In order to assess the lifetime of components submitted to creep, an incremental constitutive equation covering all creep stages is required. The basic creep equation (see equation 1...
Abstract
View Paper
PDF
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 131-142, October 22–25, 2013,
... Abstract To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing...
Abstract
View Paper
PDF
To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel 740 and Haynes 282 alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 273-281, October 21–24, 2019,
... these quantitative data determined here can be taken into account in the damage models for the lifetime assessment under complex load. EXPERIMENTAL WORK Material The material investigated in this work is a cast steel C91 (GX12CrMoVNbN9-1). Details of the chemical composition and the heat treatment compositions...
Abstract
View Paper
PDF
This study presents a characterization of the microstructural evolutions taking place in a 9%Cr martensitic cast steel subjected to fatigue and creep-fatigue loading. Basis for this study of investigation is an extensive testing program performed on a sample heat of this type of steel by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were determined by using thin metal foils in TEM. A recovery process consisting of the coarsening of the subgrains and a decrease of the dislocation density was observed in different form. This coarsening is heterogeneous and depends on the applied temperature, strain amplitude and hold time. These microstructural observations are consistent with the very fast deterioration of creep properties due to cyclic loading.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 487-503, August 31–September 3, 2010,
..., in particular with reference to their cyclic/hold test crack initiation endurances. The results of cyclic/hold creep-fatigue tests are commonly employed to establish the damage summation diagrams used to form the basis of a number of creep-fatigue assessment procedures, and it is demonstrated that care should...
Abstract
View Paper
PDF
The creep-fatigue properties of steam turbine materials such as the 1%CrMoV steel traditionally adopted for steam inlet temperatures up to ~565°C, the newer advanced 9-11%Cr steels for applications up to ~600°C, and the nickel based Alloy 617 for potential use to >700°C are reviewed, in particular with reference to their cyclic/hold test crack initiation endurances. The results of cyclic/hold creep-fatigue tests are commonly employed to establish the damage summation diagrams used to form the basis of a number of creep-fatigue assessment procedures, and it is demonstrated that care should be exercised in the way such diagrams are interpreted to compare the creep-fatigue resistances of different alloy types. The form of such damage diagrams is dependent, not only on the analytical procedures used to define the respective fatigue and creep damage fractions, but also on both the deformation and damage interaction mechanisms displayed by the material.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
...-temperature creep resistance [12]. Research work on qualification and lifetime assessments for all materials used in a A-USC plant, i.e. new nickel based materials, martensitic steels as VM12 and P92 and ferritic steels, e.g. 7CrMoVTiB10-10 (T24) and their welds have been performed [3] and the investigations...
Abstract
View Paper
PDF
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... instead of fatigue only. Generally a rule of thumb is that if only low cycle fatigue crack growth is counted and creep is not, then the calculated lifetime is about 10 times longer than the real life. Utilizing computer software, a more accurate remaining life assessment can be achieved for materials...
Abstract
View Paper
PDF
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 360-369, October 21–24, 2019,
... of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep...
Abstract
View Paper
PDF
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.
1