Skip Nav Destination
Close Modal
Search Results for
creep fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 265 Search Results for
creep fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1304-1312, October 22–25, 2013,
... is lower than the predicted life. Although this problem has been analysed, the reasons remain unclear. In this study, a fracture energy model is used to evaluate the mechanisms of the creep strength reduction for martensitic steels. In the model, changes in fracture energy with rupture time are expressed...
Abstract
View Paper
PDF
In power plants operated at elevated temperatures, the operating life of structural materials increases. Therefore, it is very important to be able to predict creep strength in long term above 100,000 h. Furthermore, it has been reported that in the long term, the actual creep strength is lower than the predicted life. Although this problem has been analysed, the reasons remain unclear. In this study, a fracture energy model is used to evaluate the mechanisms of the creep strength reduction for martensitic steels. In the model, changes in fracture energy with rupture time are expressed by a power law. The energy density rate is calculated using stress, rupture elongation, and rupture time. The model indicates two mechanisms of creep strength reduction. One is the increase in rupture elongation, which leads to reduction in creep strength with ductility; the other is the decrease in reduction of area, which leads to reduction in creep strength with brittleness. Difference between the two mechanisms affects creep-fatigue strength. The study also shows that the equation based on the fracture energy model for creep-fatigue life can be obtained by a parallel translation of that for creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 702-713, October 22–25, 2013,
.... Shingledecker, editors FRACTURE OF GR. 91 STEEL LONGITUDINAL WELDED PIPE UNDER INTERNAL PRESSURE CREEP CONDITION Masatsugu Yaguchi, Takayuki Sakai, Takashi Ogata* and Takuaki Matsumura** Central Research Institute of Electric Power Industry 2-6-1 Nagasaka, Yokosuka, 240-0196 Japan ABSTRACT An internal pressure...
Abstract
View Paper
PDF
An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter pipes at high temperatures. The creep test was also interrupted three times to measure hardness and voids density in the HAZ region of the outer surface of the test pipe. Results of the measurement of the hardness and voids density at the interruption did not indicate creep damage accumulation. The welded pipe suddenly ruptured with large deformation, which caused crushing damage to the surrounding facility. Type IV cracking occurred in the longitudinal welded portion of the test pipe, and the length of the crack reached 5000mm. SEM observation was carried out at the cross section of the welded portion of the test pipe and voids density was measured along the thickness direction in the HAZ region. To clarify the stress/strain distribution in the welded portion, creep analysis was conducted on the test pipe, where the materials are assumed to consist of base metal, weld metal and HAZ. After stress redistribution due to creep deformation, stress and strain concentrations were observed inside the HAZ region. Then, the authors' creep life prediction model was applied to the creep test result to examine its validity to actual size pipes. It was demonstrated that the life prediction model can evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 71-79, October 21–24, 2019,
... in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just...
Abstract
View Paper
PDF
A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above A C3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above A C3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above A C3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
... on creep rupture behavior focuses on the crack growth behavior in HAZ using fracture mechanics and creep ductility exhaustion approaches [15-17]. Nevertheless, the rupture lifetime of CSEF steels and their weldments was identified to depend more on the early stage damage such as the cavity nucleation...
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 561-572, October 15–18, 2024,
..., and a constant minimum creep rate It is divided into secondary creep and tertiary creep stages in which the creep rate increases and leads to fracture (see Fig. 3). The creep temperature of the boiler material is in the range of about 0.3 to 0.5 of the melting temperature (absolute temperature). In the ASME code...
Abstract
View Paper
PDF
This study conducted creep tests, microstructural, and hardness analyses on SA213T23-TP347H dissimilar weld joints of long-term serviced coal-fired boiler final superheater tube. The welded joint (SA213 T23-TP347H) of the superheater tube, after approximately 105,000 hours of service, was sampled for creep life assessment and maintenance planning. Creep tests were conducted at 600°C under three stress conditions: 100, 140, and 160MPa. Most cracks were observed in the heat-affected zone of T23, and compared to unused tubes, the creep life consumption rate was approximately 90%. All dissimilar weld joints used welding rods similar in chemical composition to T23, and significant hardness reduction occurred in the flame-affected zone.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 714-731, October 22–25, 2013,
..., elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant...
Abstract
View Paper
PDF
As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below that originally predicted from a simple extrapolation of short term data. One of the microstructural degradation mechanisms responsible for the reduction in strength is the development of creep voids. Nucleation, growth and inter linkage of voids also result in a significant loss of creep ductility. Indeed, elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant densities of voids further complicates in-service assessment of condition and weld repair of these steels. The present paper examines background on the nucleation and development of creep voids in 9 to 12%Cr martensitic steels and discusses factors affecting brittle behavior.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
... Abstract Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels...
Abstract
View Paper
PDF
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 693-704, August 31–September 3, 2010,
... for tube, ASTM A-335 P92 for pipe) based on T91/P91 steel, which has prestige creep fracture strength by replacing Mo with definite W,and adding V,Nb,N,B trace elements. P92 is expected to be used at steam temperatures of up to 600°C for superheater and reheater tube and up to 625°C for main steam pipes...
Abstract
View Paper
PDF
In this paper, the microstructural evolution of P92 steel were studied in the viewpoint of degradation mechanism based on the creep rupture experiment results obtained at elevated temperature by means of macroscopic, metallographic, electronic microscope, energy spectrum, XRD and TEM examination. The results show that the decrease of mechanical properties of P92 steel is mainly due to the change of microstructure and the transformation of carbides, and there is definite relationship between microstructure evolution, mechanical properties and life loss of P92 steel. The results are beneficial to the further study of mechanism of high temperature creep rupture strength and microstructural evolution of heat-resistant steel. It also has important instructive significance to quantitative identification of scientific selection of materials.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 668-677, October 11–14, 2016,
... (hardened) and Alloy 617 (annealed), a procedure for the estimation of critical (crack like) flaw size, using an engineering perspective, is introduced in the following. A creep fracture mechanics based method can be renounced, if the creep crack initiation duration ti is equal to or greater than...
Abstract
View Paper
PDF
For safe operation of thick-walled components for Advanced Ultra Super Critical (A-USC) power plants, detailed knowledge of the creep crack initiation and growth behavior is essential. The high loading and high temperature conditions in an A-USC power plant require, in many cases, the employment of nickel base super alloys. Unfortunately, both manufacturing and nondestructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel base super alloys are quite challenging. In this paper, one candidate material for such applications, Alloy C-263, was tested for creep and creep crack behavior at 700 °C. Objective of the study was to determine a critical flaw size. In order to establish this size, the duration to achieve the 1%-strain limit at a given load is compared with the time to grow the initial flaw for Δa = 0.5 mm when the component was loaded with the same given load. It will be shown that manufacturing parameters, e. g. heat treatment procedures, have a significant influence on the creep crack initiation and growth behavior and thus on component life. Decoration of grain boundaries with precipitates, for instance caused by the manufacturing process, can reduce the creep crack resistance and thus increase the risk for premature component failure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 582-591, October 15–18, 2024,
... the most serious life reduction. The welded joints using ER NiCr-3 filler metal reduced the strain concentration at the interface, so the fracture location shifted from the interface to HAZ of 10%Cr martensitic heat-resistant steel under high temperature and low stress conditions, and creep rupture life...
Abstract
View Paper
PDF
In this paper, the dissimilar metal welds (DMWs) between 617B nickel-based alloy and 10%Cr martensitic heat-resistant steel filled by 617 filler metal was studied, focused on the high temperature creep rupture properties. The high temperature creep rupture properties of welded joints with different welding processes were tested, and the microstructure of welded joints before and after the creep rupture test was observed by OM and SEM. The results showed that, there were three failure modes: base metal failure, type W failure and interface failure, among which interface failure caused the most serious life reduction. The welded joints using ER NiCr-3 filler metal reduced the strain concentration at the interface, so the fracture location shifted from the interface to HAZ of 10%Cr martensitic heat-resistant steel under high temperature and low stress conditions, and creep rupture life was improved. Similarly, weld cap shifted the creep crack propagation path by changing the groove form, so as to altered the stress state of joint and prolong the creep rupture life.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
.... Although these grain boundaries were often incomplete, the delineation was sufficient to obtain reasonable measurements of the PAGs using the intercept method. The creep fracture surfaces were examined in an FEI NanoSEM at 20kV using secondary electron imaging and Vickers hardness measurements (20kgf) were...
Abstract
View Paper
PDF
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1194-1198, October 11–14, 2016,
.... It is believed that location that shows the highest creep stain is the creep fracture location. However, creep fracture location is not the softest location in the weldments. In other words, the soft region will give high creep rate but softest location is not the region with the highest creep rate. Hirata...
Abstract
View Paper
PDF
Fossil fuels continue to be the primary source of energy in the U.S and worldwide. In order to improve the efficiency of fossil power plants, advanced structural materials need to be developed and deployed to meet the need of high temperature creep resistance and corrosion resistance. Examples include creep strength enhanced ferritic (CSEF) steels, austenitic stainless steels, nickel-based superalloys, and oxide dispersion strengthened alloys. Welding is extensively used in construction of fossil power plants. The performance of the weld region can be critical to the safe and economical operation of fossil power plants. Degradations in performance such as reduced creep strength and premature failure in the weld region (e.g. Type IV failure in ferritic steels) are examples of longstanding welding and weldability problems for boiler and other components. In the past, extensive studies have been carried out to characterize the different microstructures in different regions of a weld, and to a certain extent, to establish the correlations between the microstructure and the creep strength. However, the metallurgical or microstructural induced local stress/strain variations have been seldom quantified. In addition, it has been long recognized that, due to the sharp microstructure and property gradients in the weld and HAZ, the standard creep testing procedure for the base metal can produce erroneous results when used for weld testing.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 603-613, October 21–24, 2019,
... from the circumferentially welded pipe. Creep tests were conducted at 750°C for durations up to 8,000 hours, and creep deformation and rupture properties were discussed. Crack formation and fracture morphology of ruptured specimens were identified in detail to clarify the creep damage form of actual...
Abstract
View Paper
PDF
This paper investigates creep rupture and damage behaviors of HR6W weldment using full thickness specimen cut from the circumferentially welded pipe. Creep tests were conducted at 750°C for durations up to 8,000 hours, and damage morphology of weldment during creep was characterized. The applicability of several nondestructive detection methods to the creep damage evaluation was discussed. It was found that full thickness specimen was broken at the base metal and main crack was inclined approximately at 45 degrees to the axial direction of the specimen. Times to creep rupture of full thickness specimen were comparable with those of the standard specimen. In addition, a small crack in base metal on the outer surface was first observed at life fraction of 35% by replication. PT can detect the crack in about half of the life. The crack whose length is longer than 3mm can be detected by UT in latter half of the life.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 466-477, October 11–14, 2016,
... from 550 to 600oC for 20 to 30 years. For safe operation of power boilers, we need creep rupture strength (stress that causes creep fracture at a given time) of the steel in the temperature and time ranges. Accelerated creep tests are necessary for evaluating the long-term creep rupture strength...
Abstract
View Paper
PDF
A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture strength has been reported recently in long-term creep of grade 91 steel. The quick decrease of the steel is discussed by using the rupture lives evaluated. The quick decrease is confirmed in the present study in the time range longer than 3 x 10 4 h at 600°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... stainless steels failure [5]. According to this report, creep life of the TP347H tube was increased in case that plastic deformation is less than 15%, while it was decreased under high plastic deformation of more than 15% due to SIPH phenomena, and fracture surface showed intergranular fracture mode due...
Abstract
View Paper
PDF
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
..., and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater...
Abstract
View Paper
PDF
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 607-614, October 22–25, 2013,
... tests were performed under constant load in air at 650°C, using cross-weld specimens. The creep strength of welded joint was lower than that of base metal. Type IV fracture occurred in the long-term. Creep voids were detected in the FGHAZ after the fracture. Number of creep voids was higher...
Abstract
View Paper
PDF
In order to clarify the effect of stress state on microstructural changes during creep, the microstructure was observed in the central part of the cross section of the fine-grained heat-affected zone (FGHAZ) and in the surface region of the FGHAZ in Gr.92 steel welded joint. Creep tests were performed under constant load in air at 650°C, using cross-weld specimens. The creep strength of welded joint was lower than that of base metal. Type IV fracture occurred in the long-term. Creep voids were detected in the FGHAZ after the fracture. Number of creep voids was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. It was checked the multiaxiality of stress during creep was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. The recovery of dislocation structure occurred after creep in the base metal and the FGHAZ. Mean subgrain size increased with increasing time to rupture. However, there was no difference of change of subgrain size during creep in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ. The growth of M 23 C 6 carbide and MX carbonitrides was observed during creep in the base metal and the FGHAZ. Laves phase precipitation occurred during creep. There was no difference of the change of mean diameter of MX carbonitrides in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ after creep. However, the growth rate of M 23 C 6 carbide in the FGHAZ was much higher in the central part of the cross section than in the surface region.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 903-913, October 22–25, 2013,
... weldments have not yet been sufficiently evaluated and reported. In this study, then, creep rupture tests were conducted on the weldments of these alloys, and creep rupture strength and fracture behavior were investigated. EXPERIMENTAL PROCEDURE Test Materials Six types of Fe-Ni and Ni-based alloys...
Abstract
View Paper
PDF
A Japanese national project has been undertaken since Aug. 2008 with the objective of developing an advanced ultra-supercritical power plant (A-USC) with a steam temperature of 700°C. Fe-Ni and Ni-based alloys, namely HR6W, HR35, Alloy617, Alloy740, Alloy263 and Alloy141, were taken as candidate materials for piping and superheater/reheater tubes in an A-USC boiler. Weldments of these alloys were manufactured by GTAW, after which long term creep rupture tests were conducted at 700°C, 750°C and 800°C. Weldments of HR6W, HR35 and Alloy617 showed similar creep strength as compared with these base metals. Weldments of Alloy740 tended to fail in the HAZ, and it is considered that voids and cracks preferentially formed in the small precipitation zone along the grain boundary in the HAZ. The creep strength of Alloy263 in weldments exhibited the highest level among all the alloys, although HAZ failure occurred in the low stress test condition. A weld strength reduction factor will be needed to avoid HAZ failure in Alloy740 and Alloy263. Also, to prevent premature failure in weld metal, optimization of the chemical composition of weld filler materials will be required.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 546-557, October 21–24, 2019,
... decades) than of alloy C-263 "G1" and is in a similar range as alloy 617. Thus, the creep crack behavior of alloy C-263 "G2" is significantly better compared to alloy C-263 "G1". Since examining the creep crack behavior on fracture mechanic specimens is quite intense, it was investigated, whether...
Abstract
View Paper
PDF
Detailed knowledge of the creep and creep crack behavior is essential for a safe operation of thick-walled components in thermal power plants. High mechanical loads and temperatures of more than 700 °C often require the application of nickel-based alloys, e.g. alloy C-263. Unfortunately, manufacturing and non-destructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel-based alloys are quite challenging. Tolerable critical flaw sizes, experimentally validated for long service durations, play an important role in the quality assurance of such components. It is commonly accepted that manufacturing parameters, e.g. heat treatment procedures, have a significant influence on creep ductility and time-dependent crack behavior. By means of adjusting the process parameters, the ductility and the creep life of notched specimen can be significantly improved in the case of alloy C-263. Essential root cause is the decoration of grain boundaries with carbides which drastically influences creep crack initiation and growth. This results in significant differences for allowable critical flaw sizes and thus, the potential use of the candidate material. On a first generation of alloy C-263 “G1”, a dense population of carbides on the grain boundaries was found, which resulted in an inadmissible creep crack behavior. The resulting critical flaw sizes were only a few tenths of a millimeter. On a second generation “G2”, the grain boundary occupation was positively influenced, so that a satisfactory creep crack behavior could be found. The critical flaw sizes are in the order of one millimeter or more. A critical or impermissible material behavior under creep conditions can be demonstrated by testing smooth and notched round specimens. For example, the first generation “G1” notched round specimens fails earlier than the smooth round specimens, indicating notch sensitivity. On the second generation “G2”, however, a notch insensitivity was found. The critical defect sizes can be determined by a method that takes into account a simultaneous examination of the crack tip situation and the ligament situation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 271-282, October 11–14, 2016,
... microstructure in the vicinity of fracture edge. The creep cracks were found to occur and propagate along the grain boundaries. For the SEM microstructure in higher magnification, creep void and consequent linking micro crack were confirmed for all crept specimen tested at different temperatures and stresses...
Abstract
View Paper
PDF
Continuous and extensive works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants worldwide. Since Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti, ASME Code Case 2684) was selected as one of the promising candidate materials of A-USC boiler tube and pipe for long-term creep strength evaluation and field exposure test. In the present study, to establish the creep damage and life assessment method for Ni based alloy component, long-term creep rupture properties, microstructural stability, and creep damage morphology of HR6W weldment were experimentally investigated. Creep tests of HR6W weldment were conducted at temperature range of 700 to 800°C for durations up to 70,000 hours. Failure behavior of creep void formation and creep crack growth was identified, and damage mechanism of weldment during creep were discussed and characterized. Furthermore, uniaxial interrupted creep tests were carried out, the creep damage evaluation was conducted and life assessment approach was proposed based on the metallographic quantification evaluation of creep void and microstructure evolution. It demonstrated the possibility and validity to evaluate creep damage of Ni based alloy component with creep void and microstructure parameters.
1