Skip Nav Destination
Close Modal
Search Results for
creep deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 311 Search Results for
creep deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
... captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated...
Abstract
View Paper
PDF
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 620-639, August 31–September 3, 2010,
... resistance and long-term creep rupture strength, particularly in welded joints where resistance to Type IV cracking is critical for constructing thick-section boiler components. The current research aims to investigate the creep deformation behavior and microstructure evolution during creep for base metals...
Abstract
View Paper
PDF
In advanced ultra-supercritical (A-USC) power plants, which operate at steam temperatures of 700 °C or higher, there is a need to replace 9 to 12Cr martensitic steels with high-strength nickel-base superalloys or austenitic steels for components exposed to the highest temperatures. However, due to the high cost of nickel-base superalloys, it is desirable to use 9 to 12% Cr martensitic steels for components exposed to slightly lower temperatures, ideally expanding their use up to 650 °C. Key challenges in developing ferritic steels for 650 °C USC boilers include enhancing oxidation resistance and long-term creep rupture strength, particularly in welded joints where resistance to Type IV cracking is critical for constructing thick-section boiler components. The current research aims to investigate the creep deformation behavior and microstructure evolution during creep for base metals and heat-affected-zone (HAZ) simulated specimens of tempered martensitic 9Cr steels, including 9Cr-boron steel and conventional steels like grade 91 and 92. The study discusses the creep strengthening mechanisms and factors influencing creep life. It proposes an alloy design strategy that combines boron strengthening and MX nitride strengthening, avoiding the formation of boron nitrides during normalizing heat treatment, to improve the creep strength of both base metal and welded joints.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1124-1135, October 25–28, 2004,
... Abstract Creep deformation behavior of the T122 type steels with different matrix phases such as α’ (martensite) and α’+δ (martensite and delta-ferrite) at different stress levels has been studied comparing with those of the model steels with the initial microstructures consisting...
Abstract
View Paper
PDF
Creep deformation behavior of the T122 type steels with different matrix phases such as α’ (martensite) and α’+δ (martensite and delta-ferrite) at different stress levels has been studied comparing with those of the model steels with the initial microstructures consisting of the various combination of matrices such as ferrite (α), martensite (α’) and austenite (γ), and precipitates such as MX and M 23 C 6 . The heterogeneous creep deformation is found to be pronounced at lower stress level in the steel with a dual phase matrix of α’+δ, resulting in a complex sigmoidal nature in the creep rupture life. The creep deformation process of the steel with the dual phase matrix is similar to that of the model steel with the α phase matrix which exhibits a typical heterogeneous creep deformation and the early transition to the acceleration creep at a very small creep strain. Such a heterogeneous creep deformation is much pronounced along the interfaces between the soft δ ferrite and the hard martensite (α’) phases, and has a viscous nature in creep deformation which was first identified in P91 steel. It is concluded that the homogeneous microstructure is a key for achieving the long-term creep strength in the advanced ferritic steels at elevated temperatures over 600°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1229-1241, October 25–28, 2004,
... suppresses coarsening of these carbides during creep deformation, leading to excellent microstructural stability and creep strength. Further improvement of creep strength is achieved by the addition of appropriate amount of nitrogen which enhances precipitation of fine MX. Excess addition of nitrogen...
Abstract
View Paper
PDF
Tempered martensitic 9-12%Cr steels bearing tungsten, such as P92 and P122 showing higher creep rupture strength than the conventional steel P91, have been developed for thick section components in ultra-supercritical (USC) boilers. However, their creep strength is not sufficient for applying at the steam condition of 650°C/35MPa or above, which is a recent target condition in order to increase plant efficiency. The research and development project in NIMS on advanced high-Cr steels which can be applied at the steam condition of 650°C/35MPa as boiler components with large diameter and thick section has been carried out since 1997. In this project, it has been revealed that the addition of boron more than 0.01 mass% to the 0.08C-9Cr- 3W-3Co-V,Nb-<0.00ЗN steel remarkably improves creep strength. The boron enriched in M 23 C 6 carbides near prior-austenite grain boundaries suppresses coarsening of these carbides during creep deformation, leading to excellent microstructural stability and creep strength. Further improvement of creep strength is achieved by the addition of appropriate amount of nitrogen which enhances precipitation of fine MX. Excess addition of nitrogen to the high-B containing steel reduces creep rupture lives and ductility. The highest creep strength is obtained in the 0.08C-9Cr-3W-3Co-0.2V-0.05Nb-0.0139B-0.0079N (mass%) steel, resulting in excellent creep strength in comparison with that of P92 and P122. This steel shows good creep ductility even in the long term. It is, therefore, concluded that this high-B bearing 9Cr-3W-3Co-V,Nb steel with the addition of nitrogen in the order of 0.008 mass% is the promising candidate which shows superior creep strength without impairing creep ductility for thick section components in the 650°C-USC plant.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, October 15–18, 2024,
... revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior...
Abstract
View Paper
PDF
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1289-1299, October 15–18, 2024,
... Abstract Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated...
Abstract
View Paper
PDF
Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated. Creep tests were conducted at 650°C and 700°C using standard and miniature specimens taken from the axial and circumferential directions of tubes, and effects of specimen size, sampling direction and position on creep properties were discussed. Creep deformation of long-term used materials with significant microstructural evolution accelerated earlier than that of virgin material, and the time to creep rupture and the fracture ductility were also smaller. The degradation of rupture properties of the long-term used material was discussed in relation with microstructural evolution. In addition, there was little effects of specimen size and sampling direction on creep deformation and rupture time, whereas the time to creep rupture changed significantly due to the sampling position.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 360-369, October 21–24, 2019,
... Abstract This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures...
Abstract
View Paper
PDF
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 570-579, October 21–24, 2019,
... material was degraded, the resistance against crack propagation was reduced, while in the region where stress was relaxed, the crack driving force was lowered. creep deformation crystal nickel-base superalloys fatigue crack propagation gas turbines material degradation Joint EPRI 123HiMAT...
Abstract
View Paper
PDF
Single crystal Ni-base superalloys are subjected to tension hold at high temperature in addition to cyclic loading during the operation of gas turbines. Various studies have investigated creep-fatigue crack propagation in superalloys under trapezoidal loadings and evaluated the life time based on parameters such as creep J-integral. However, it is still unclear how damage field and stress-strain condition change at the crack tip during hold time, and how it affects on fatigue crack propagation. In this study, the influence of the tension hold and accompanying creep at crack tip on subsequent fatigue crack propagation behavior was evaluated by introducing single tension holds into pure cyclic loadings. The series of the experiments revealed that because of the tension hold, material degradation and stress relaxation occurred simultaneously ahead of crack tip. In the region where material was degraded, the resistance against crack propagation was reduced, while in the region where stress was relaxed, the crack driving force was lowered.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1299-1312, October 25–28, 2004,
... Abstract The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study...
Abstract
View Paper
PDF
The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study was to show the boron distribution and identify the influence of boron on precipitation processes taking place in both steels during long-term creep exposure. The incorporation of boron into the M 23 C 6 precipitates in both steels was demonstrated. In P92 steel (30 ppm B), boron was distributed preferentially on prior austenite grain boundaries and hardly visible on the sub-grain boundaries. In the steel B2 doped with 100 ppm B, boron was densely distributed on prior austenite grain- and sub-grain boundaries as well as within martensite laths. Quantitative TEM metallography and boron trace autoradiography investigation showed that boron retarded the growth of M 23 C 6 by forming borocarbides M 23 (C, B) 6 , thereby significantly improving the creep rupture strength of boron doped 9% chromium steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
... development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep. advanced ultra...
Abstract
View Paper
PDF
By utilizing computational thermodynamics in a Design of Experiments approach, it was possible to design and manufacture nickel-base superalloys that are strengthened by the eta phase (Ni3Ti), and that contain no gamma prime (Ni3Al,Ti). The compositions are similar to NIMONIC 263, and should be cost-effective, and have more stable microstructures. By varying the aging temperature, the precipitates took on either cellular or Widmanstätten morphologies. The Widmanstätten-based microstructure is thermally stable at high temperatures, and was found to have superior ductility, so development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 914-923, October 21–24, 2019,
... properties depended on the microstructure of the alloys. aging boron creep deformation creep properties creep test microstructure near-alpha-titanium alloys solution treatment Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019...
Abstract
View Paper
PDF
Titanium alloys are expected to be used as heat-resisting structural materials in the airplane and automotive industries. In this study, the creep properties of near-α Ti alloys consisting of a lamellar microstructure were studied. Ti–8.5wt%Al–8.0wt%Zr–2wt%Mo–1wt%Nb–0.15wt%Si alloy (alloy code, TKT34) and an alloy with 0.1 wt% of added boron (alloy code, TKT35) were used in this study. An ingot was hot forged at a temperature of 1,403 K and hot rolled (caliberrolling) at a temperature of 1,273 K to a reduction rate of approximately 90%. It then underwent solution treatment in a β single-phase region followed by air cooling. Finally, it was subjected to aging treatment for 28.3 ks at a temperature of 863 K and then air-cooled. Two solution treatment conditions were applied: a time of 1.8 ks at a temperature of 1,323 K (high temperature/short time (HS)) and a time of 3.6 ks at a temperature of 1,223 K (low temperature/long time (LL)). The average grain size of the prior β grains showed a tendency of the solution treatment temperature being low and the boron-added alloys tending to be small. The length and thickness of the lamellar of these alloys shortened or thinned owing to the addition of boron and at a low solution treatment temperature. The creep tests were carried out at an applied stress of 137 MPa and a temperature of 923 K in air. The creep rupture life of these alloys was excellent, in order of TKT35 (LL) < TKT34 (LL) < TKT35 (HS) ≦ TKT34 (HS). Therefore, the creep rupture life of these alloys was shown to be superior under the HS solution treatment condition as compared to the LL solution treatment condition. However, the minimum or steady-state strain rate of these alloys became slower in order of TKT 35 (LL)> TKT34 (LL)> TKT34 (HS) ≧ TKT35 (HS). The creep properties depended on the microstructure of the alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1320-1330, October 15–18, 2024,
...) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation...
Abstract
View Paper
PDF
The localized creep failure in the heat-affected zone (HAZ) of Grade 91 steel weldments has been identified as one of the most important factors causing significantly shortened service lifetime and structural integrity issues of welded components in advanced fossil and nuclear power plants. To conduct a reliable creep lifetime assessment, a new engineering assessment approach has been developed by incorporating the experimentally determined local properties of the heterogeneous HAZ. By creep testing a purposely simulated HAZ specimen with in situ digital image correlation (DIC) technique, the highly gradient creep properties across the HAZ of Grade 91 steel was quantitatively measured. A physical creep cavitation constitutive model was proposed to investigate the local creep deformation and damage accumulation within the heterogeneous HAZ, which takes into account the nucleation of creep cavities and their growth by both grain boundary diffusion and creep deformation. The relationship among the local material property, creep strain accumulation, and evolution characteristic of creep cavities was established. The approach was then utilized to investigate the creep response and subsequent life for an ex-service 9% Cr steel weldment by incorporating the effects of pre-existing damages which developed and accumulated during long-term services. The predicted results exhibited quantitative agreement with the DIC measurement in terms of both nominal/local creep deformation as well as the subsequent life under the test conditions at 650 and 80 MPa.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
... to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate...
Abstract
View Paper
PDF
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
...). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility...
Abstract
View Paper
PDF
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1429-1435, October 21–24, 2019,
... stage, both show similar behavior with rupture time of about 50 h and rupture elongation of 60 %. At the low stress, on the other hand, reverse behavior occurs, that is, W α 2 shows creep rate higher than Nγ in transient stage. The regions near grain boundaries progressively deformed for both specimens...
Abstract
View Paper
PDF
In this study the effect of Widmanstätten-type morphology α 2 plates on creep has been investigated by preparing nearly equiaxed γ (N γ ) and nearly equiaxed γ having Widmanstätten-type α 2 plates within grain (Wα 2 ). Creep tests were conducted at 1073 K under constant stresses, high stress and low stress, in air. At the high stress, Wα 2 shows creep rate smaller than N γ in transient stage, both specimens show similar minimum creep rate and the creep strain at minimum creep rate is 3 % for Wα 2 and 10 % for N γ, since N γ shows prolonged primary region. In acceleration stage, both show similar behavior with rupture time of about 50 h and rupture elongation of 60 %. At the low stress, on the other hand, reverse behavior occurs, that is, W α 2 shows creep rate higher than Nγ in transient stage. The regions near grain boundaries progressively deformed for both specimens at high stress level, whereas deformed region is extended within grain interiors. From these results it is suggested that α 2 plate act as the obstacle for dislocation motion in the γ matrix at high stress and that interfacial dislocation promote the creep deformation at low stress.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses...
Abstract
View Paper
PDF
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
... of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found...
Abstract
View Paper
PDF
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1115-1123, October 25–28, 2004,
... in the steels. The Laves phase precipitated finely in the lath was enlarged in the 11.5%Cr steel even after a short-term creep. This result indicates that the coarsening of precipitates such as the Laves phase promotes the recovery of the lath in the early stage of creep deformation. It was suggested that 9%Cr...
Abstract
View Paper
PDF
The effect of Cr content on the creep strength at 650°C was examined with high Cr heat resistant steels for the USC high-temperature rotor shafts. The amount of Cr was varied from 8.5% to 11.5%, and then, the alloying effect of Cr was investigated on the stability of the precipitates at 650°C. Within the present range of the Cr content, the short-term creep rupture life under the higher applied stress increased with the Cr content in the steels, whereas the long-term creep rupture life under the lower applied stress decreased with the Cr content in the steels. For example, under the applied stress of 98MPa, the 9%Cr steel exhibited the longest creep rupture life among the experimental steels. Also, it was found from the experiment using the extracted residues that the degree of solution strengthening and the sorts of precipitates scarcely changed regardless of the Cr content in the steels. The Laves phase precipitated finely in the lath was enlarged in the 11.5%Cr steel even after a short-term creep. This result indicates that the coarsening of precipitates such as the Laves phase promotes the recovery of the lath in the early stage of creep deformation. It was suggested that 9%Cr is desirable content in the ferritic steel for suppressing the degradation of creep strength in 98MPa at 650°C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, October 15–18, 2024,
... before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were...
Abstract
View Paper
PDF
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 71-79, October 21–24, 2019,
... temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation. austenite grain boundaries creep deformation...
Abstract
View Paper
PDF
A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above A C3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above A C3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above A C3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
1