Skip Nav Destination
Close Modal
Search Results for
creep curves
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 226 Search Results for
creep curves
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 466-477, October 11–14, 2016,
... Abstract A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture...
Abstract
View Paper
PDF
A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture strength has been reported recently in long-term creep of grade 91 steel. The quick decrease of the steel is discussed by using the rupture lives evaluated. The quick decrease is confirmed in the present study in the time range longer than 3 x 10 4 h at 600°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1457-1468, October 21–24, 2019,
... Abstract A constitutive equation, with parameters derived from the interpolation of primary and steady state stages of constant load creep curves, has been utilized to estimate the stress relaxation behavior of the martensitic steel X20Cr13, alloy used in many high temperature applications...
Abstract
View Paper
PDF
A constitutive equation, with parameters derived from the interpolation of primary and steady state stages of constant load creep curves, has been utilized to estimate the stress relaxation behavior of the martensitic steel X20Cr13, alloy used in many high temperature applications, including heavy duty gas turbines. Creep and stress relaxation tests have been performed at 350°C, close to the negligible creep temperature of the studied alloy for stresses of interest for engineering applications. The creep tests were carried out at stresses below and above the yield stress, whereas, for the relaxation stress tests, the imposed strain was in the range 0.2% to 1.2% with the purpose to have, at the beginning of the tests, the same initial stresses of the performed creep tests. After a stress relaxation period, lasting between 10 to 1000 hours, each specimen was generally reloaded at the initial stress and a new relaxation test, on the same specimen, was carried out. This “reloading procedure”, simulating the re-tightening of bolts, has been repeated several times. The proposed equation has shown to well predict the experimental creep and stress relaxation behavior of the steel under investigation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 360-369, October 21–24, 2019,
... to tackle the task of modelling P91 are the Modified Graham-Walles Model [6], the Bolton Characteristic Strain Model [7], and the MHG Model [8]. As evident especially from the MHG model, where some function can be chosen freely, the models can fit already quantified creep curves and do not extrapolate creep...
Abstract
View Paper
PDF
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 750-759, October 15–18, 2024,
... geometry alone, all the grain boundaries are considered equivalent in this case. Creep curves in Fig. 4 show that under these conditions, the microstructures with different growth fractions do not show any discernable difference in creep behavior. With the bond surface behaving like bulk grain boundaries...
Abstract
View Paper
PDF
Diffusion bonded compact heat exchangers have exceptionally high heat transfer efficiency and might significantly improve the performance and reduce the cost of supercritical carbon-dioxide Brayton cycle power plants using high temperature heat sources, like high temperature nuclear reactors and concentrating solar power plants. While these heat exchangers have an excellent service history for lower temperature applications, considerable uncertainty remains on the performance of diffusion bonded material operating in the creep regime. This paper describes a microstructural modeling framework to explore the plausible mechanisms that may explain the reduced creep ductility and strength of diffusion bonded material, compared to wrought material. The crystal plasticity finite element method (CPFEM) is used to study factors affecting bond strength in polycrystals mimicking diffusion bonded microstructures. Additionally, the phase field method is also employed to simulate the grain growth and recrystallization at the bond line to model the bonding process and CPFEM is used to predict the resulting material performance to connect processing parameters to the expected creep life and ductility of the material, and to study potential means to improve the structural reliability of the material and the resulting components by optimizing the material processing parameters.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1429-1435, October 21–24, 2019,
... followed by A.C. In this study, N and W 2 was conducted to creep testing. Figure 3 shows stress-instantaneous strain curve for two alloys. At the beginning of creep testing, the loading was divided several times and instantaneous strain was measured at each time of loading. It is clear...
Abstract
View Paper
PDF
In this study the effect of Widmanstätten-type morphology α 2 plates on creep has been investigated by preparing nearly equiaxed γ (N γ ) and nearly equiaxed γ having Widmanstätten-type α 2 plates within grain (Wα 2 ). Creep tests were conducted at 1073 K under constant stresses, high stress and low stress, in air. At the high stress, Wα 2 shows creep rate smaller than N γ in transient stage, both specimens show similar minimum creep rate and the creep strain at minimum creep rate is 3 % for Wα 2 and 10 % for N γ, since N γ shows prolonged primary region. In acceleration stage, both show similar behavior with rupture time of about 50 h and rupture elongation of 60 %. At the low stress, on the other hand, reverse behavior occurs, that is, W α 2 shows creep rate higher than Nγ in transient stage. The regions near grain boundaries progressively deformed for both specimens at high stress level, whereas deformed region is extended within grain interiors. From these results it is suggested that α 2 plate act as the obstacle for dislocation motion in the γ matrix at high stress and that interfacial dislocation promote the creep deformation at low stress.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 621-627, October 21–24, 2019,
...], the creep test matrix was finished and the complete results are discussed below. Figure 5(a) shows typical creep curves for both the experimental alloy and a standard Alloy 263 specimen. Figure 5(b) shows a Larson-Miller plot of the data for the experimental alloy, along with a design curve of average data...
Abstract
View Paper
PDF
In wrought nickel-base alloys used at elevated temperatures for extended periods of time, it is commonly observed that unwanted phases may nucleate and grow. One such phase is the eta phase, based on Ni 3 Ti, which is a plate-shaped precipitate that nucleates at the grain boundaries and grows at the expense of the strengthening gamma prime phase. In order to study the effects of eta phase on creep performance, Alloy 263 was modified to contain 3 different microstructures: standard (contains gamma prime); aged (contains gamma prime and eta); and modified (contains only eta and no gamma prime). These microstructures were then creep tested in the range of 973-1123 K (700-850°C). An extensive test matrix revealed that the eta-only modified alloy had creep rupture strengths within 10% of the standard alloy even though this alloy had no strengthening gamma prime precipitates. It also exhibited superior creep ductility. A preliminary test matrix on the aged material containing eta and gamma prime prior to the creep tests revealed that the performance of this microstructure was generally between that of the standard alloy (best) and the eta-only alloy (worst). The aged material exhibited far superior creep ductility. These results suggest that the presence of the eta phase may not be deleterious to creep ductility, and in fact, may enhance it.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1244-1255, October 22–25, 2013,
... analysis to determine a set of calibration curves for inferring strain at any given vertical displacement. Some creep strain data are also presented. creep strain displacement finite element analysis small punch creep test test specimens Advances in Materials Technology for Fossil Power Plants...
Abstract
View Paper
PDF
A prototype small punch test rig has been developed to extend the range of data output. Through the introduction of a probe, vertical displacements can be measured across a region of the specimen underside. This information provides much greater understanding of the specimen deformation. Having displacement data at a series of measurement points also facilitates the calculation of strains across the sample. The probe can also be used during a test to provide time dependent data from small punch creep tests. The measured displacement data have been used in conjunction with FE analysis to determine a set of calibration curves for inferring strain at any given vertical displacement. Some creep strain data are also presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 513-522, October 21–24, 2019,
... rupture strength on a stable basis even in a temperature range of 600 C to 850 C. The average creep rupture strength of HR6W for 100,000 hours registered in the German Standard TUV (VdTUV559/2) is 118MPa at 650 C, 85MPa at 700 C, 62MPa at 750 C and 42MPa at 800 C. Creep curve of HR6W at 750 C , 108MPa...
Abstract
View Paper
PDF
Development of the advanced USC (A-USC) boiler technology has been promoted in recent years, which targets 700°C steam condition. HR6W (Ni-23Cr-7W-Ti-Nb-25Fe) and HR35 (Ni-30Cr-6W-Ti-15Fe) have been developed for A-USC boiler tubes and pipes. The former alloy is mainly strengthened by Fe 2 W type Laves phase. The latter one employs precipitation strengthening of α-Cr phase in addition to Laves phase. Characteristic alloy design of both alloys, which does not use precipitation strengthening of γ′ phase (Ni 3 Al), leads to superior ductility and resistance to stress-relaxation cracking. Stability of creep strength and microstructure has been confirmed by long-term creep rupture tests. The 100,000h average creep rupture strength of HR6W is 85MPa at 700C. That of HR35 is 126MPa at 700°C which is comparable with conventional Alloy617. Tubes of both alloys have been evaluated by the component test in Japanese national A-USC project with γ′ hardened Alloy617 and Alloy263. Detailed creep strength, deformation behavior and microstructural evolution of these alloys are described from the viewpoint of the difference in strengthening mechanisms. Capability of these alloys for A-USC boiler materials has been demonstrated by the component test in the commercial coal fired boiler as the part of the A-USC project.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 561-572, October 15–18, 2024,
... creep. Creep characteristics are determined by applying a constant load uniaxially to the test specimen and measuring the amount of deformation over time. A typical creep curve shows an immediate amount of deformation ( 0) when the load is applied, primary creep where the amount of deformation decreases...
Abstract
View Paper
PDF
This study conducted creep tests, microstructural, and hardness analyses on SA213T23-TP347H dissimilar weld joints of long-term serviced coal-fired boiler final superheater tube. The welded joint (SA213 T23-TP347H) of the superheater tube, after approximately 105,000 hours of service, was sampled for creep life assessment and maintenance planning. Creep tests were conducted at 600°C under three stress conditions: 100, 140, and 160MPa. Most cracks were observed in the heat-affected zone of T23, and compared to unused tubes, the creep life consumption rate was approximately 90%. All dissimilar weld joints used welding rods similar in chemical composition to T23, and significant hardness reduction occurred in the flame-affected zone.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1389-1394, October 21–24, 2019,
... changed at the transition point clearly. Figure 1: Double logarithmic plot of modulous compensated applied stress and minimum creep rate in CP-Ti. Blakets mean a ongoing test with an estimated mimimum creep rate. Next, characteristic creep curves were shown in Fig. 2. The behaviors at 297 K and at 623 K...
Abstract
View Paper
PDF
Titanium is extensively utilized in the aerospace industry due to its low density and excellent mechanical and chemical properties. Given that components in this sector are exposed to temperatures up to 873 K, representing 45% of the metal's melting point, understanding the mechanical properties in this temperature range is crucial for ensuring flight safety. This study focuses on examining the creep behavior of pure titanium to gain insights into its fundamental mechanical response. Creep was observed to occur at stresses exceeding micro-yielding levels around 297 K, primarily attributed to overcoming the pinning effect caused by interstitial atoms. Interestingly, at intermediate temperatures, an inverted primary creep phenomenon was noted, with an activation energy of approximately 240 kJ/mol within this range. This value, significantly larger than those associated with lattice or dislocation-core diffusions, suggests the potential movement of dislocations with interstitial atoms, similar to the diffusion of oxygen or nitrogen within titanium. Moreover, fracture strain exceeded 80% at temperatures surpassing 673 K, possibly resulting from grain boundary diffusion mechanisms akin to superplasticity. The activation energy for this mechanism, at 97 kJ/mol, is adequate for activating grain boundary deformation at intermediate temperatures.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
... melting and electroslag remelting. Also, high pure forging tube had the highest toughness. Transition temperature Figure 5: Charpy impact test LONG-TERM CREEP RUPTURE PROPERTIES Stress rupture curve Figure 6(a) shows the creep rupture curves of plates (Heat 1, 2, and 3). A creep testing program...
Abstract
View Paper
PDF
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1257-1268, October 15–18, 2024,
... values. Creep behavior Figure 3 shows the creep curves (a) and the corresponding creep rate-time curves (b) of 15Mo specimens having the initial microstructures shown in Figs. 2(b), (d) and (f) under 973 K/300 MPa. From the results, it is apparent that the higher the the longer is the rupture life (tr...
Abstract
View Paper
PDF
This study investigates the role of grain-boundary precipitates in enhancing creep rupture strength of Ni-based alloys through analysis of Ni-15Cr-15Mo and Ni-15Cr-17Mo (at.%) model alloys. The investigation focused on the “Grain-boundary Precipitation Strengthening (GBPS)” effect from the thermally stable TCP phase, a phenomenon previously observed in Fe-Cr-Ni-Nb austenitic heat-resistant steels. Through multi-step heat treatments, specimens were prepared with varying grain boundary coverage ratios (ρ) of TCP P phase (oP56) and consistent grain-interior hardness from GCP Ni2(Cr, Mo) phase (oP6). In the 15 at.% Mo alloy, specimens with a higher coverage ratio (~80%) demonstrated significantly improved creep performance, achieving nearly four times longer rupture time (3793 h vs. 1090 h) at 300 MPa and 973 K compared to specimens with lower coverage (~35%). However, the 17 at.% Mo alloy showed unexpectedly lower performance despite high coverage ratios, attributed to preferential cavity formation at bare grain boundaries. These findings confirm that GBPS via thermally stable TCP phase effectively enhances creep properties in Ni-based alloys, with grain boundary coverage ratio being more crucial than intragranular precipitation density.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, October 15–18, 2024,
...) Hardness (HV) Wrought 30.2 6479 1.12 0.6 200 176 AB 625W 161.0 54 2.73 2.7 136 187 SA 625W 205.7 33 2.56 2.9 121 165 Creep Response The creep curves of the wrought, AM AB, and AM SA specimens tested at 650°C and 194 MPa can be found in Fig. 4. Critical values of the creep tests are tabulated in Table 3...
Abstract
View Paper
PDF
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 448-459, October 21–24, 2019,
...-740H (a, e, g) and A-740H (b, f, h). (a, b) SEM images; (c, d) EDS patterns of (Nb, Ti)C; (e, f) TEM images and SAED patterns of M23C6 particles; (g,h) TEM images of the matrix morphology. Macroscopic creep curves Figure 2 shows the crept ruptured specimens (Fig. 2(a)) and the corresponding creep...
Abstract
View Paper
PDF
Inconel 740H is one of the most promising candidate Ni-base superalloys for the main steam pipe of 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. After processing and welding in manufacturing plant in solution-annealed state, large components was commonly suggested to have an extra aging treatment at 800 °C for 16 h, in order to obtain homogeneous γ′ precipitates. In this present work, creep tests and microstructure analyses were conducted on Inconel 740H pipe specimens under two different heat treatments to verify the necessity of aging process. Here we show that aging treatment has limited effect on the creep rupture life of Inconel 740H pipe. Both in grain interiors and along grain boundaries, crept specimens under two different heat treatments have the same precipitates. But the shape and distribution of γ′ in solution annealed sample is not as regular as the aged ones. Our results provide the underlying insight that aging treatment is not so necessary for the straight pipes if the on-site condition was hard to control. But for both groups of specimens, a small amount of h particles and some banded like M 23 C 6 were emerged during creep, which would be harmful to mechanical properties for the long run.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1289-1299, October 15–18, 2024,
.... Creep Deformation Behaviors Figure 8 shows creep curves of standard specimens at 650°C and 700°C for aged materials in comparison with those of virgin material. Note the creep time is normalized by the time to creep rupture at each condition. The result on the flame side of the X material was presented...
Abstract
View Paper
PDF
Creep deformation and rupture properties of several long-term used Super 304H steel boiler tubes were presented in this paper. The aged superheater tubes that have been in service for about 140,000 hours at the approximate metal temperature ranged from 550°C to 640°C, were investigated. Creep tests were conducted at 650°C and 700°C using standard and miniature specimens taken from the axial and circumferential directions of tubes, and effects of specimen size, sampling direction and position on creep properties were discussed. Creep deformation of long-term used materials with significant microstructural evolution accelerated earlier than that of virgin material, and the time to creep rupture and the fracture ductility were also smaller. The degradation of rupture properties of the long-term used material was discussed in relation with microstructural evolution. In addition, there was little effects of specimen size and sampling direction on creep deformation and rupture time, whereas the time to creep rupture changed significantly due to the sampling position.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 592-602, October 21–24, 2019,
.... The vertical axis indicates the ratio of elongation of the interrupted specimen and ruptured specimen, while the horizontal axis indicates the ratio of interrupted time and rupture time. The standardized HR6W creep curve is shown for reference. The creep curve indicates that acceleration creep is generated...
Abstract
View Paper
PDF
In order to establish a creep damage assessment method for 47Ni-23Cr-23Fe-7W (HR6W), which is a candidate material of A-USC, microstructure observation of creep interrupted specimens and ruptured specimen was conducted, and the creep damage process was examined. Creep tests were conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain boundaries from about 0.35 of creep life ratio, and crack ratio increased drastically after creep life ratio of 0.65. This crack ratio was almost the same regardless of the specimen shape Therefore, the method to assess crack ratio using replicas is considered to be an effective method for creep damage assessment of HR6W. An increase in the crack ratio due to an increase in creep life ratio showed the same trend as the change in elongation of creep interrupted specimens. Microstructure observations were conducted with interrupted specimens using SEM-ECCI (Electron Channeling Contrast Imaging) in order to clarify the cause of acceleration creep. The results showed that sub-boundary developed significantly near grain boundaries, which indicates that sub-boundary development may cause acceleration.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1018-1026, October 11–14, 2016,
.... For this reason it was considered as a measure to reach optimized creep life, too. First creep experiments have been initiated on precipitation annealed material. Fig. 3a displays creep curves of selected 100 MPa experiments carried out at 650 °C on the as-rolled 17Cr2_4, additionally precipitation annealed...
Abstract
View Paper
PDF
High chromium HiperFer (High performance ferritic) materials present a promising concept for the development of high temperature creep and corrosion resistant steels. The institute for Microstructure and Properties of Materials (IEK-2) at Forschungszentrum Jülich GmbH, Germany develops high strength, Laves phase forming, fully ferritic steels which feature excellent resistance to steam oxidation and better creep life than state of the art 9-12 Cr steels. Mechanical strength properties of these steels depend not only on chemical composition, but can be adapted to various applications by specialized thermo(mechanical) treatment. The paper will outline the sensitivity of tensile, creep, stress relaxation and impact properties on processing and heat treatment. Furthermore an outlook on future development potentials will be derived.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 351-359, October 22–25, 2013,
... in creep-fatigue tests 353 3. EXPERIMENTAL RESULTS AND DISCUSSION 3.1Creep crack growth behavior Similar to the creep curve, the creep crack growth (CCG) curve of both high and low temperature sections can be divided into 3 stages, as shown in Fig.3. The crack growth first experiences a relative long stage...
Abstract
View Paper
PDF
This paper presents the creep and creep-fatigue crack growth behaviors of 30Cr1Mo1V turbine rotor steel which had been in service for 16 years. Two typical sections of the rotor, i.e. high and low temperature sections, are examined at 538°C, with crack initiation and propagation monitored by D.C. potential drop method in a compact tension (CT) specimen. The material of the high temperature section has the lower resistance to creep and creep-fatigue crack growths than the low temperature section. The creep crack initiation (CCI) time decreases with the increase of initial stress intensity factor. The creep-fatigue crack growth (CFCG) is dominated by the cycle-dependent fatigue process when the hold time at the maximum load is shorter, but it becomes dominated by the time-dependent creep process when the hold time becomes longer. The high temperature section shows a larger influence of time-dependent creep behavior on CFCG than the low temperature section.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 47-59, October 21–24, 2019,
... for Grade 91 plate steels [5]. Figure 1: History of allowable stresses of Grade 91 steels in Japan [6, 7]. 48 REGION SPLITTING ANALYSIS Stress vs. time to rupture curve is usually not a linear line, but a slope of curve changes with time, since creep strength of material changes as a result...
Abstract
View Paper
PDF
Creep strength of Grade 91 steels has been reviewed and allowable stress of the steels has been revised several times. Allowable stress regulated in ASME Boiler and Pressure Vessel Code of the steels with thickness of 3 inches and above was reduced in 1993, based on the re-evaluation with long-term creep rupture data collected from around the world. After steam leakage from long seam weld of hot reheat pipe made from Grade 122 steel in 2004, creep rupture strength of the creep strength enhanced ferritic (CSEF) steels has been reviewed by means of region splitting method in consideration of 50% of 0.2% offset yield stress (half yield) at the temperature, in the committee sponsored by the Ministry of Economy, Trade and Industry (METI) of Japanese Government. Allowable stresses in the Japanese technical standard of Grade 91 steels have been reduced in 2007 according to the above review. In 2010, additional long-term creep rupture data of the CSEF steels has been collected and the re-evaluation of creep rupture strength of the steels has been conducted by the committee supported by the Federation of Electric Power Companies of Japan, and reduction of allowable stress has been repeated in 2014. Regardless of the previous revision, additional reduction of the allowable stress of Grade 91 steels has been proposed by the review conducted in 2015 by the same committee as 2010. Further reduction of creep rupture strength of Grade 91 steels has been caused mainly by the additional creep rupture data of the low strength materials. A remaining of segregation of alloying elements has been revealed as one of the causes of lowered creep rupture strength. Improvement in creep strength may be expected by reducing segregation, since diffusional phenomena at the elevated temperatures is promoted by concentration gradient due to segregation which increases driving force of diffusion. It has been expected, consequently, that the creep strength and allowable stress of Grade 91 steels can be increased by proper process of fabrication to obtain a homogenized material free from undue segregation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 159-170, October 15–18, 2024,
... the temperature within ±3°C. Semi-quantitative creep curves were generated using two linear variable differential transformer (LVDT). These LVDT followed the displacement of two rods clamped to the top and bottom specimen grips. Lever arm machines were used for creep testing of the full size LPBF 282 specimens...
Abstract
View Paper
PDF
The Advanced Materials and Manufacturing Technologies (AMMT) program is aiming at the accelerated incorporation of new materials and manufacturing technologies into nuclear-related systems. Complex Ni-based components fabricated by laser powder bed fusion (LPBF) could enable operating temperatures at T > 700°C in aggressive environments such as molten salts or liquid metals. However, available mechanical properties data relevant to material qualification remains limited, in particular for Ni-based alloys routinely fabricated by LPBF such as IN718 (Ni- 19Cr-18Fe-5Nb-3Mo) and Haynes 282 (Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al). Creep testing was conducted on LPBF 718 at 600°C and 650°C and on LPBF 282 at 750°C. finding that the creep strength of the two alloys was close to that of wrought counterparts. with lower ductility at rupture. Heat treatments were tailored to the LPBF-specific microstructure to achieve grain recrystallization and form strengthening γ' precipitates for LPBF 282 and γ' and γ" precipitates for LPBF 718. In-situ data generated during printing and ex-situ X-ray computed tomography (XCT) scans were used to correlate the creep properties of LPBF 282 to the material flaw distribution. In- situ data revealed that spatter particles are the potential causes for flaws formation in LPBF 282. with significant variation between rods based on their location on the build plate. XCT scans revealed the formation of a larger number of creep flaws after testing in the specimens with a higher initial flaw density. which led to a lower ductility for the specimen.
1