Skip Nav Destination
Close Modal
Search Results for
cold reheat piping system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 37
Search Results for cold reheat piping system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
Life Management of High Energy Piping Systems - An Integrated Maintenance and Operations Approach
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 683-691, October 25–28, 2004,
... Abstract To obtain the maximum life for fossil power plant high energy piping systems requires a management process that goes beyond a maintenance response to discovered damage or problems. The catastrophic failure of a cold reheat piping system in 2003 and the ongoing damage reported...
Abstract
View Papertitled, Life Management of High Energy <span class="search-highlight">Piping</span> <span class="search-highlight">Systems</span> - An Integrated Maintenance and Operations Approach
View
PDF
for content titled, Life Management of High Energy <span class="search-highlight">Piping</span> <span class="search-highlight">Systems</span> - An Integrated Maintenance and Operations Approach
To obtain the maximum life for fossil power plant high energy piping systems requires a management process that goes beyond a maintenance response to discovered damage or problems. The catastrophic failure of a cold reheat piping system in 2003 and the ongoing damage reported for feedwater and steam piping systems in other power plants suggest a need for a comprehensive process of life management This paper proposes a process based upon the successful EPRI program for boiler tube failure reduction. Key to this process is a structure that fully confirms the damage or failure mechanism, that identifies the root cause for the mechanism, and that establishes short and long-term corrective actions for the damage. Finally, the process must be implemented through a cross-functional team of plant staff covering maintenance, operations, and engineering disciplines to assure the most complete and cost effective actions to prevent future damage.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 672-682, October 25–28, 2004,
... attemperator use being sufficient to initiate the crack. cold reheat steam line computational fluid dynamics crack initiation cyclic thermal shocks failure evaluation finite element analysis fracture mechanics test metallographic examination piping system stress concentration factor...
Abstract
View Papertitled, Evaluation of the Failure in the Texas Genco W. A. Parish Unit #8 <span class="search-highlight">Cold</span> <span class="search-highlight">Reheat</span> Line
View
PDF
for content titled, Evaluation of the Failure in the Texas Genco W. A. Parish Unit #8 <span class="search-highlight">Cold</span> <span class="search-highlight">Reheat</span> Line
Texas Genco requested Stress Engineering Services to assist in reviewing and assessing a failure that occurred in the cold reheat (CRH) steam line at the W.A. Parish Unit around 12:10 PM on July 15, 2003, resulting in a catastrophic failure scattering components within a 1,200-foot radius. Reliant Resources and Texas Genco conducted their own investigation involving metallographic examinations, fracture surface inspection, review of operating conditions at failure time, and studies related to the CRH line weld profile. Stress Engineering Services' efforts included computational fluid dynamics studies to address how attemperator droplet sizes might impact downstream piping system behavior, followed by mock-up testing and field monitoring using high-temperature strain gauges, accelerometers, and thermocouples. The field monitoring data, along with process data from Texas Genco, were used for finite element analyses calculating static stresses and transient stresses from attemperator cycling (thermal stresses) and line vibration (mechanical stresses). A consulting firm contracted by the Electric Power Research Institute (EPRI) performed a fracture mechanics evaluation of the line, though detailed results are not included. The work by Texas Genco, Stress Engineering Services, and EPRI points to the stress concentration factor associated with the internal weld profile near the failure as the primary cause, with the cyclic thermal shocks from frequent intermittent attemperator use being sufficient to initiate the crack.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 29-45, October 3–5, 2007,
... Casing 12% Cr Rotor 12% Cr Inlet Pipe, Nozzle Casing Ni-Based-Alloy Blades Ni-Based-Alloy Fig. 5-3-1 Cooled Turbine 36 6. Case Study 6-1 Case A Fig. 6-1-1 shows the system configuration of Case A. A typical double reheat steam cycle was used and the pressure and temperature were raised to a 35MPa 700 deg...
Abstract
View Papertitled, Refurbishment of Aged PC Power Plants with Advanced USC Technology
View
PDF
for content titled, Refurbishment of Aged PC Power Plants with Advanced USC Technology
The capacity of PC power plants in Japan rose to 35GW in 2004. The most current plants have a 600 deg-C class steam temperature and a net thermal efficiency of approximately 42% (HHV). Older plants, which were built in the ‘70s and early ‘80s, will reach the point where they will need to be rebuilt or refurbished in the near future. The steam temperatures of the older plants are 538 deg-C or 566 deg-C. We have done a case study on the refurbishment of one of these plants with the advanced USC technology that uses a 700 deg-C class steam temperature in order to increase the thermal efficiency and to reduce CO 2 emissions. The model plant studied for refurbishing has a 24.1MPa/538 deg-C /538 deg-C steam condition. We studied three possible systems for the refurbishing. The first was a double reheat system with 35MPa/700 deg-C /720 deg-C /720 deg-C steam conditions, the second one was a single reheat 25MPa/700 deg-C/720 deg-C system, the last one was a single reheat 24.1MPa/610 deg-C/720 deg-C system. In addition to these, the most current technology system with 600 deg-C main and reheat temperatures was studied for comparison. The study showed that the advanced USC Technology is suitable for refurbishing old plants. It is economical and environmentally-friendly because it can reuse many of the parts from the old plants and the thermal efficiency is much higher than the current 600 deg-C plants. Therefore, CO 2 reduction is achieved economically through refurbishment.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 556-567, October 11–14, 2016,
..., such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers...
Abstract
View Papertitled, Development and Application of T91 <span class="search-highlight">Cold</span> Weld Repair Techniques
View
PDF
for content titled, Development and Application of T91 <span class="search-highlight">Cold</span> Weld Repair Techniques
The application of cold weld repair techniques in the power industry has been well documented. This type of repair is only considered when a conventional repair (involving post-weld heat treatment) is impracticable or the penalties of time and cost for conventional repair are sufficiently high. A typical cold weld repair in the UK has involved low alloy ferritic steel (½Cr½Mo¼V, 2¼Cr1Mo) components welded with nickel based SMAW consumables or ferritic FCAW consumables. Modified 9Cr steel components have been used in UK power plant since the late 1980’s for a number of applications, such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers, pipework and tubes. These repairs have been underwritten with extensive testing. This paper will describe the work performed on developing T91 cold weld repairs and where they have been applied on power plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 24-40, October 22–25, 2013,
... to change a single reheat plant to a double reheat plant. Case B had a 700 deg-C class single reheat condition. It was expected to have a fairly high level of thermal efficiency improvement and not require extreme remodeling. Case C had a 700 deg-C class temperature only in the reheat system...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
We have reported on the effort being done to develop the A-USC technology in Japan, which features the 700 deg-C steam condition, since the 2007 EPRI conference. Our 9 year project began in 2008. There have been some major changes in the electricity power market in the world recently. At first, the earthquake changed the power system violently in Japan. Almost all nuclear power plants have been shut down and natural gas, oil and coal power plants are working fully to satisfy the market's demands. In the USA, the so called ‘Shale gas revolution’ is going on. In Europe, they are working toward the target of reducing CO 2 emissions by the significant use of renewables with the backup of the fossil fuel power systems and enhancing power grids. A very rapid increase in power generation by coal is being observed in some countries. Despite some major changes in the electric sector in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have been done during the first half of the project term. Long term material tests such as creep rupture of base materials and welds will be conducted for 100,000hrs continuing after the end of the project with the joint effort of each participating company. Today, we are preparing the plan for the second half of the project, which is made up of boiler components test and the turbine rotating tests. Some boiler superheater panels, large diameter pipes and valves will be tested in a commercially operating boiler from 2015 to 2017. The turbine rotor materials which have the same diameter as commercial rotors will be tested at 700 deg-C and at actual speed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 528-539, February 25–28, 2025,
... are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved...
Abstract
View Papertitled, Damage of Rankine Cycle Components in Concentrated Solar Power Plants
View
PDF
for content titled, Damage of Rankine Cycle Components in Concentrated Solar Power Plants
The steam generation systems (SGS) of concentrated solar power (CSP) plants employ multiple heat exchangers arranged in series to convert thermal energy collected from the sun via a heat transfer fluid (HTF) to produce superheated steam in the Rankine cycle. Common CSP plant designs are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved efficiency, reheaters are also included in the Rankine cycle. In central tower design with directly heated water as the HTF, the receiver can also be considered part of the Rankine cycle. Operating experiences of CSP plants indicate that plant reliability is significantly impacted by failures in various components of the Rankine cycle. Many damage mechanisms have been identified, which include corrosion, thermal fatigue, creep, and stress corrosion cracking, among others. Much of the damage can be attributed to poor water/steam chemistry and inadequate temperature control. While damage in the Rankine cycle components is common, there is generally lack of comprehensive guidelines created specifically for the operation of these CSP components. Therefore, to improve CSP plant reliability and profitability, it is necessary to better understand the various damage mechanisms experienced by linking them to specific operating conditions, followed by developing a “theory and practice” guideline document for the CSP operators, so that failures in the Rankine cycle components can be minimized. In a major research project sponsored by the U.S. Department of Energy (DOE), effort is being undertaken by EPRI to develop such a guideline document exclusively for the CSP industry. This paper provides an overview of the ongoing DOE project along with a few examples of component failures experienced in the Rankine cycle.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 325-341, August 31–September 3, 2010,
... only in the reheat system. The temperature of the main steam system is kept at 610 deg-C. This configuration would enable us to choose ferritic materials for the main steam system. It was expected to have a good level of thermal efficiency improvement and require only light remodeling without the heavy...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
The “Cool Earth-Innovative Energy Technology Program,” launched by the Japanese government in March 2008, aims to significantly reduce global greenhouse gas emissions. Among the 21 selected technologies is the Advanced Ultra Super Critical (A-USC) pressure power generation, which targets the commercialization of a 700°C class pulverized coal power system with a power generation efficiency of 46% by around 2015. As of 2004, Japan's pulverized coal power plant capacity reached 35 GW, with the latest plants achieving a steam temperature of 600°C and a net thermal efficiency of approximately 42% (HHV). Older plants from the 1970s and early 1980s, with steam temperatures of 538°C or 566°C, are nearing the need for refurbishment or rebuilding. A case study on retrofitting these older plants with A-USC technology, which uses a 700°C class steam temperature, demonstrated that this technology is suitable for such upgrades and can reduce CO 2 emissions by about 15%. Following this study, a large-scale development of A-USC technology began in August 2008, focusing on developing 700°C class boiler, turbine, and valve technologies, including high-temperature material technology. Candidate materials for boilers and turbine rotor and casing materials are being developed and tested. Two years into the project, useful test results regarding these candidate materials have been obtained, contributing to the advancement of A-USC technology.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 101-124, October 11–14, 2016,
... and pipe for the boiler and heat exchanger sections of AUSC and sCO2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube...
Abstract
View Papertitled, Alloy 740H: Development of Fittings Capability for A-USC Applications
View
PDF
for content titled, Alloy 740H: Development of Fittings Capability for A-USC Applications
INCONEL alloy 740H has been specified for tube and pipe for the boiler and heat exchanger sections of AUSC and sCO 2 pilot plants currently designed or under construction. These systems also require fittings and complex formed components such as flanges, saddles, elbows, tees, wyes, reducers, valve parts, return bends, thin-wall cylinders and tube sheets. The initial evaluation of alloy 740H properties, leading to ASME Code Case 2702, was done on relatively small cross-section tube and plate. The production of fittings involves the use of a wide variety of hot or cold forming operations. These components may have complex geometric shapes and varying wall thickness. The utility industry supply chain for fittings is largely unfamiliar with the processing of age-hardened nickel-base alloys. Special Metals has begun to address this capability gap by conducting a series of trials in collaboration with selected fittings manufacturers. This paper describes recent experiences in first article manufacture of several components. The resulting microstructure and properties are compared to the published data for tubular products. It is concluded that it will be possible to manufacture most fittings with properties meeting ASME Code minima using commercial manufacturing equipment and methods providing process procedures appropriate for this class of alloy are followed. INCONEL and 740H are registered trademarks of Special Metals Corporation.
Proceedings Papers
A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 260-270, October 3–5, 2007,
... degreeC. In the former A-USC, it is expected that the heat efficiency of 46% is achieved by the application of double reheat cycle. When the steam temperature is gone up to 800 degree-C in A-USC system, the heat efficiency of about 49% will be realized. As a result, the main steam pressure is 35MPa in 700...
Abstract
View Papertitled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
View
PDF
for content titled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
In response to the need to reduce carbon dioxide gas emissions, Japan has been actively researching 700°C-class thermal power plants with a focus on improving overall plant efficiency. This technological advancement is fundamentally grounded in advanced materials development, encompassing the creation of high-strength alloys, fireside corrosion-resistant materials, and steamside oxidation-resistant alloys. A significant challenge emerged as some of the developed materials fell outside the scope of existing domestic technical standards. Moreover, the potential failure modes for advanced ultra-supercritical (A-USC) components operating at 700°C were anticipated to differ substantially from those observed in traditional ultra-supercritical (USC) components at 600°C. Consequently, researchers systematically examined and analyzed the potential failure modes specific to 700°C A-USC components, using these insights to establish comprehensive performance requirements. The research initiative, which commenced in June 2006, was strategically planned to develop a draft technical interpretation by March 2011. This paper provides a detailed overview of the investigative process, encompassing the comprehensive analysis of failure modes, the derivation of performance requirements, and the progression toward developing a new technical interpretation framework for high-temperature power plant components.
Proceedings Papers
Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
... and hot reheat piping system and showed that by using 740H in lieu of 617, the number of pipes required would decrease, the length of each individual extruded pipe section would increase, the number of welds for the piping system would decrease, the pipe thickness would decrease, and the amount of welding...
Abstract
View Papertitled, Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
View
PDF
for content titled, Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
... information was not present during fabrication of the facility though having the tested tramp element data has been beneficial in prioritizing post commissioning inspections of the main steam and hot reheat piping systems. 61 EARLY LIFE PERFORMANCE The overall project milestones and dates for the AEP Turk...
Abstract
View Papertitled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
View
PDF
for content titled, Materials Performance in the First U.S. Ultrasupercritical (USC) Power Plant
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, February 25–28, 2025,
...-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME...
Abstract
View Papertitled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
View
PDF
for content titled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project, primarily funded by the U.S. Department of Energy and Ohio Coal Development Office between 2015 and 2023, focused on validating the manufacture of commercial-scale components for an 800 megawatt power plant operating at 760°C and 238 bar steam conditions. The project scope encompassed fabrication of full-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME Code Stamp approval for nickel-based alloy pressure relief valves. This comprehensive effort successfully established technical readiness for commercial-scale A-USC demonstration plants while developing a U.S.-based supply chain and providing more accurate cost estimates for future installations.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 231-259, October 3–5, 2007,
... and Piping DE-1 Corrosion behaviour of materials for 720°C plan 3,70 M 2007-2010 DE-2 DE-4 Reheater materials after cold forming Development of Technology and Qualification of longitudinally welded pipes made of Nickel based alloys Strength and Deformation Behavior of Tubes, Piping and Forgings made from Ni...
Abstract
View Papertitled, Materials Qualification for 700 °C Power Plants
View
PDF
for content titled, Materials Qualification for 700 °C Power Plants
Components exposed to the highest temperatures and mechanical loading in 700°C power plants are predominantly manufactured from nickel-based alloys, with ongoing material development for boiler and turbine components in this challenging temperature regime. This paper presents comprehensive investigations of various components, including tubing, membrane walls, and thick-walled structures constructed from nickel-based alloys. Qualification programs for boiler components have demonstrated the applicability of Alloy 617, with similar extensive programs and investigations currently underway for Alloy 263 and Alloy 740. Researchers have conducted detailed experiments and investigations to optimize and qualify welding consumables, aiming to transfer critical knowledge directly to component manufacturing processes. Recognizing the complexity of material performance, the study emphasizes the necessity of long-term material qualification, which extends beyond traditional creep behavior assessments to include detailed investigations of deformation capabilities following extended aging periods. These comprehensive evaluations are crucial for ensuring the reliability and performance of advanced high-temperature power plant components under extreme operational conditions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 86-95, August 31–September 3, 2010,
... Projects Boiler application MARCK0 700 DE-1 DE-2 FDBR02 Material qualification for the 700/720 °C power plant Fireside corrosion and steam side oxidation behavior of materials for the 700°C power plant Characterization of superheater materials after cold deformation Qualification of pipes with longitudinal...
Abstract
View Papertitled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
View
PDF
for content titled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant in Mannheim, Germany, simulates extreme conditions of up to 725°C and 350/200 bar pressure. After approximately 2000 hours of operation, the paper presents an overview of the rig's design, its integration into the existing plant, and the status of ongoing tests. It also outlines parallel material investigations, including creep rupture tests, mechanical-technological testing, and metallurgical characterization. This research is crucial for the development of materials capable of withstanding the severe conditions in next-generation power plants, potentially improving efficiency and performance in future energy production.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
.... This is about +66C (150F) for the enclosure and +93 C to 149C (200F to 300F) for the final superheater over the temperature for USC. Achieving up to 760C (1400F) final superheat will require T-92 in the enclosure and 740H nickel alloy tubes and headers for the superheater, reheater and steam piping. A-USC...
Abstract
View Papertitled, A Steam Generator for 700C to 760C Advanced Ultra-Supercritical Design and Plant Arrangement: What Stays the Same and What Needs to Change
View
PDF
for content titled, A Steam Generator for 700C to 760C Advanced Ultra-Supercritical Design and Plant Arrangement: What Stays the Same and What Needs to Change
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
... the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables. continuous seam welding nickel base superalloys pipe fittings power systems seam welded alloy pipes seam welded alloy tubes...
Abstract
View Papertitled, Seam Welded Alloy 740H Tube and <span class="search-highlight">Pipe</span> for Advanced Power <span class="search-highlight">Systems</span>
View
PDF
for content titled, Seam Welded Alloy 740H Tube and <span class="search-highlight">Pipe</span> for Advanced Power <span class="search-highlight">Systems</span>
Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution-strengthened alloys if thinner tube wall can be specified. To date, the only age-hardened alloy that has been approved for service in the time dependent temperature regime in the ASME Boiler and Pressure Vessel Code is INCONEL alloy 740H. Extensive evaluation of seamless tube, pipe, and forged fittings in welded construction, including implant test loops and pilot plants, has shown the alloy to be fit for service in the 650-800°C (1202-1472°F) temperature range. Since, nickel-base alloys are much more expensive than steel, manufacturing methods that reduce the cost of material for advanced power plants are of great interest. One process that has been extensively used for stainless steels and solution-strengthened nickel-base alloys is continuous seam welding. This process has rarely been applied to age-hardened alloys and never for use as tube in the creep-limited temperature regime. This paper presents the initial results of a study to develop alloy 740H welded tube, pipe and fittings and to generate data to support establishment of ASME code maximum stress allowables.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... analysis [18]. Recently both of High Pressure Combined Steam Valves (HPCSV) were all jammed during the cold start of steam turbine in an ultra supercritical power plant. This work deals with failure analysis on jam fault of valves utilizing the technology supervision system, and probable reasons in design...
Abstract
View Papertitled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
View
PDF
for content titled, Analysis of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
Evaluation of Weld Cracking Susceptibility of Candidate Ni-Based Alloys for Advanced USC Boilers
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1048-1059, October 21–24, 2019,
... relaxation cracking susceptibility of Alloy 617, which is a candidate material for steam piping in Japan, was conducted. In addition, susceptibilities of hot cracking and reheat cracking of candidate Ni-based alloys were evaluated relatively by Trans-Varestraint [3] testing and SSRT testing [4], respectively...
Abstract
View Papertitled, Evaluation of Weld Cracking Susceptibility of Candidate Ni-Based Alloys for Advanced USC Boilers
View
PDF
for content titled, Evaluation of Weld Cracking Susceptibility of Candidate Ni-Based Alloys for Advanced USC Boilers
The susceptibilities of hot cracking and reheat cracking of A-USC candidate Ni-based alloys were evaluated relatively by Trans-Varestraint testing and Slow Strain Rate Tensile (SSRT) testing. In addition, semi-quantitative evaluation of the stress relaxation cracking susceptibility of Alloy 617 was conducted, because stress relaxation cracking in the heat affected zone (HAZ) has actually been reported for repair welds in Alloy 617 steam piping in European A-USC field-testing. Solidification cracking susceptibilities of Alloy 617 were the highest; followed by HR35, Alloy 740 and Alloy 141, which were all high; and then by HR6W and Alloy 263, which were relatively low. In addition, liquation cracking was observed in the HAZ of Alloy 617. The reheat cracking susceptibilities of Alloy 617, Alloy 263, Alloy 740 and Alloy 141 were somewhat higher than those of HR6W and HR35 which have good creep ductility due to the absence of γ’ phase precipitates. A method to evaluate stress relaxation cracking susceptibility was developed by applying a three-point bending test using a specimen with a V-notch and finite element analysis (FEA), and it was shown that stress relaxation cracking of aged Alloy 617 can be experimentally replicated. It was proposed that a larger magnitude of creep strain occurs via stress relaxation during the three-point bending test due to a higher yield strength caused by γ’ phase strengthening, and that low ductility due to grain boundary carbides promoted stress relaxation cracking. The critical creep strain curve of cracking can be created by means of the relationship between the initial strain and the creep strain during the three-point bending tests, which were calculated by FEA. Therefore, the critical conditions to cause cracking could be estimated from the stress relaxation cracking boundary from of the relationship between the initial strain and the creep strain during the three-point bending test.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 924-930, October 11–14, 2016,
.... Typical 9-12% Cr steels are suitable for components exposed to harsh environment conditions prevailing in components, such as headers, superheaters, reheaters, steam pipes and steam turbine components. The creep resistance of these materials is based on a tempered martensite microstructure strengthened...
Abstract
View Papertitled, Supercritical Water Oxidation and Creep Behaviour of Boiler Tube Materials
View
PDF
for content titled, Supercritical Water Oxidation and Creep Behaviour of Boiler Tube Materials
High efficiency in power generation is not only desirable because of economical reasons but also for enhanced environmental performance meaning reduced quantity of forming ash and emissions. In modern medium to large size plants, improvements require supercritical steam values. Furthermore, in future there will be an increasing share of renewables, such as wind and solar power, which will enhance the fluctuation of supply with the consequence that other power sources will have to compensate by operating in a more demanding cyclic or ramping mode. The next generation plant will need to operate at higher temperatures and pressure cycles coupled with demanding hot corrosion and oxidation environments. Such an operation will significantly influence the performance of materials used for boilers and heat exchanger components by accelerating oxidation rates and lowering mechanical properties like creep resistance. The paper discusses the oxidation behaviour of San25, 800H and alloy 263 in supercritical water at temperatures 650 and 700 °C at 250 bar, and compares the changes of mechanical properties of materials at these temperatures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 735-749, February 25–28, 2025,
... high temperatures and stresses. The alloy system for the weld metal is designed to be used in the stress-relieved condition after AM building-up rather than being normalized and tempered. This paper will present how the reheat of subsequent weld passes does not result in substantially softened areas...
Abstract
View Papertitled, Weld Metal Additive Manufacturing for Grade 91
View
PDF
for content titled, Weld Metal Additive Manufacturing for Grade 91
This study investigates a novel approach to addressing the persistent Type IV cracking issue in Grade 91 steel weldments, which has remained problematic despite decades of service history and various mitigation attempts through chemical composition and procedural modifications. Rather than further attempting to prevent heat-affected zone (HAZ) softening, we propose eliminating the vulnerable base metal entirely by replacing critical sections with additively manufactured (AM) weld metal deposits using ASME SFA “B91” consumables. The approach employs weld metal designed for stress-relieved conditions rather than traditional normalizing and tempering treatments. Our findings demonstrate that the reheat cycles during AM buildup do not produce the substantial softening characteristic of Type IV zones, thereby reducing the risk of premature creep failure. The study presents comprehensive properties of the AM-built weld metal after post-weld heat treatment (PWHT), examines factors influencing deposit quality and performance, and explores the practical benefits for procurement and field construction, supported by in-service data and application cases.
1