Skip Nav Destination
Close Modal
Search Results for
coarsening kinetics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 56 Search Results for
coarsening kinetics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
... addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics. corrosion resistance creep-rupture properties fossil energy structural applications iron-chromium-aluminum alloys Laves phase oxidation resistance tensile properties...
Abstract
View Paper
PDF
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1042-1063, October 25–28, 2004,
... of creep and damage kinetics, weldability, microstructure analysis during creep, modeling of precipitation and coarsening kinetics, and deformation behavior under creep loading. The individual projects are briefly described, outlining the conceptual approach towards quantitatively describing the creep...
Abstract
View Paper
PDF
The Institute of Materials Science, Welding and Forming (IWS) conducts research activities on ferritic/martensitic 9-12% Cr steels through an interconnected network of projects. These projects focus on mechanical properties of base and weld metals, microstructural characterization of creep and damage kinetics, weldability, microstructure analysis during creep, modeling of precipitation and coarsening kinetics, and deformation behavior under creep loading. The individual projects are briefly described, outlining the conceptual approach towards quantitatively describing the creep behavior of 9-12% Cr steels. The research efforts aim to comprehensively understand and model the creep performance of these advanced steel grades by investigating their microstructural evolution, damage mechanisms, precipitation kinetics, and deformation characteristics under creep conditions. The integrated projects examine both base metals and welded joints, providing insights into material properties, weldability, and microstructure-property relationships critical for their application in high-temperature components.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 627-644, October 3–5, 2007,
..., analysis of creep and damage mechanisms, weldability studies, microstructural evolution during creep, mathematical modeling of precipitation and coarsening kinetics, and simulation of complex heat treatments and creep deformation behavior. Through these interconnected projects, which are briefly described...
Abstract
View Paper
PDF
The Institute for Materials Science, Welding and Forming (IWS) conducts extensive research on modern martensitic 9-12% Cr steels intended for use in environmentally friendly power plants. Their comprehensive research program encompasses mechanical testing of base and weld metals, analysis of creep and damage mechanisms, weldability studies, microstructural evolution during creep, mathematical modeling of precipitation and coarsening kinetics, and simulation of complex heat treatments and creep deformation behavior. Through these interconnected projects, which are briefly described, IWS develops a thorough understanding of these materials while working toward a quantitative model of their creep behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1016-1024, October 22–25, 2013,
... kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since...
Abstract
View Paper
PDF
This paper summarizes recent efforts to improve creep performance in Grade 91 (Mod. 9Cr-1Mo, ASTM A387) steel weldments via non-standard heat treatments prior to welding. Such heat treatments offer a potential solution for minimizing Type IV failures in creep strength enhanced ferritic (CSEF) steels. A lower temperature tempering (LTT, 650°C) of the 9Cr steels prior to gas tungsten arc welding (GTAW) resulted in improved creep-rupture life at 650°C compared to the samples tempered at a standard condition (HTT, 760°C) before welding. From detailed characterization of precipitation kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since M 23 C 6 in the FGHAZ was only partially dissolved prior to welding, which caused coarsening of existing M 23 C 6 after PWHT and premature creep failure in the FGHAZ. However, it was also found that the LTT raised the ductile-brittle transition temperature above room temperature (RT). Two different thermo-mechanical treatments (TMTs); two-step tempering and aus-forging/aus-aging, of the modified 9Cr-1Mo steels were attempted, in order to control the balance between creep properties and RT ductility, through control of precipitation kinetics of the M 23 C 6 carbides and/or MX carbo-nitrides. The hardness map of the TMT samples after GTAW and PWHT were evaluated.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 433-440, October 21–24, 2019,
... of the diameter of the secondary particles vs. aging time. In the all alloys, d linearly increased when increasing the aging time above 1 h, and the gradient was 0.33, which suggests that it increased along the Ostwald ripening during the aging treatment. It was found that the kinetics of particle coarsening...
Abstract
View Paper
PDF
The morphological evolution of secondary γ′ precipitates under the coarsening process was investigated for commercial wrought Ni-based superalloys, which can be classified into two processes, i.e. “localization process” and “aggregation process”. The localization process was defined as a phenomenon in which cuboidal γ′ precipitates were arranged in the <100> direction for superalloys. In contrast, the aggregation process was defined as a phenomenon in which neighboring spherical γ′ precipitates coarsen while overlapping their interfaces for superalloys. All the wrought Ni-based superalloys could be classified into the above two processes based on their volume fraction and lattice misfit. The coarsening of γ′ precipitates follow the aggregation process when the misfit is smaller than 0.05%, and it follows the localization process otherwise.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1064-1070, October 25–28, 2004,
... Abstract A novel multi-component, multi-particle, multi-phase precipitation model is used to predict the precipitation kinetics in complex 9-12% Cr steels investigated within the European COST project. These steels are used for tubes, pipes, casings and rotors in USC (ultra super critical...
Abstract
View Paper
PDF
A novel multi-component, multi-particle, multi-phase precipitation model is used to predict the precipitation kinetics in complex 9-12% Cr steels investigated within the European COST project. These steels are used for tubes, pipes, casings and rotors in USC (ultra super critical) steam power plants for the 21 st century. In the computer simulations, the evolution of the precipitate microstructure is monitored during the entire fabrication heat treatment including casting, austenitizing, several annealing treatments. The main interest lies on the concurrent nucleation, growth, coarsening and dissolution of different types of precipitates.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 645-657, October 3–5, 2007,
... to corrosion and significantly reduces creep life due to rapid coarsening. Through combined Monte Carlo grain boundary precipitation kinetics and continuum creep damage modeling, researchers have predicted that increasing the proportion of MX-type particles could enhance creep performance. This hypothesis...
Abstract
View Paper
PDF
Research has demonstrated that creep damage in power plant steels is directly linked to grain boundary precipitates, which serve as nucleation sites for cavities and micro-cracks. The formation of M 23 C 6 carbides along grain boundaries creates chromium-depleted zones vulnerable to corrosion and significantly reduces creep life due to rapid coarsening. Through combined Monte Carlo grain boundary precipitation kinetics and continuum creep damage modeling, researchers have predicted that increasing the proportion of MX-type particles could enhance creep performance. This hypothesis was tested using hafnium-containing steel, which showed improved creep and corrosion properties in 9% Cr steels. Ion implantation of Hafnium into thin foils of 9 wt% Cr ferritic steel resulted in two new types of precipitates: hafnium carbide (MX-type) and a Cr-V rich nitride (M 2 N). The hafnium carbide particles, identified through convergent beam diffraction and microanalysis, appeared in significantly higher volume fractions compared to VN in conventional ferritic steels. Additionally, Hafnium was found to eliminate M 23 C 6 grain boundary precipitates, resulting in increased matrix chromium concentration, reduced grain boundary chromium depletion, and enhanced resistance to intergranular corrosion cracking.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
.... The following phases were selected independently for calculation: BCC, FCC, M23C6 carbide, Laves phase (Fe2(W,Mo) (C14). The particle coarsening kinetic was calculated using Prisma-software on the base Calphad Database Calculation with the kinetic MOBFE1 and the thermodynamic TCFE6 databases. The model...
Abstract
View Paper
PDF
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 783-789, October 3–5, 2007,
... by narrow channels of matrix. During the gas turbine s operation period, on the other hand, the microstructure may change accompanying with severe directional coarsening, so-called rafting, of the initially cuboidal precipitates to the plate-like or needle-like structure by the creep stress due...
Abstract
View Paper
PDF
The morphology of γ/γ' microstructures in single crystal superalloys is known to evolve during service conditions according to established materials science principles, potentially offering a novel approach for failure analysis. This study investigated the morphological changes in γ/γ' microstructures of CMSX-4, a single crystal Ni-base superalloy, under various loading conditions. The experimental parameters included tensile and compressive stress levels, loading temperature, loading rate, monotonic versus cyclic loading, and multi-axial stress states. Results demonstrated that the γ/γ' microstructures exhibited highly sensitive responses to these loading conditions. A newly developed quantitative image analysis method was used to characterize these morphological changes, and the findings were compiled into a two-dimensional map to facilitate failure analysis and other engineering applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... of increasing Cr content to resist oxidation, potentially quickens the microstructure degradation in the long term, due to nucleation and coarsening of Cr-rich Z-nitride phase [1]. In more detail, it has been shown that the coarsening kinetics for this Z-phase, promoted by Cr, largely depends on the initial...
Abstract
View Paper
PDF
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 116-122, October 21–24, 2019,
... is hierarchical precipitatestrengthened microstructures with high density of internal interfaces [1,2,4,7]. The morphology, distribution and coarsening kinetics of secondary phase particles have the greatest impact on the mechanical properties and, especially, on the creep resistance of the steels [1,4,7-10...
Abstract
View Paper
PDF
The microstructures of an advanced Ta-added 9Cr-3Co-2W-Mo steel with increased boron content that has been homogenized at different temperatures were investigated. The chains of coarse W-rich particles were observed in the steel after homogenization at 1150°C for 24 h. These particles remained in the microstructure after normalization and tempering. Such additional dispersion hardening in the initial state of the studied steel decreased the creep rate in transient region. However, the duration of steady state creep and overall creep time was increased in the samples homogenized at 1200°C. Despite of the presence of coarse W-rich particles, the impact toughness of the low-temperature- homogenized steel in the tempered condition was significantly higher than that of the steel homogenized at 1200°C
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 520-530, October 3–5, 2007,
... kinetics is faster. 0.09 0.08 0.07 Cu rich precipitates 0.06 0.05 TiC 0.04 0 20 40 60 80 100 120 Time at 750oC, hours Figure 2. Size and coarsening behavior of Cu-rich and TiC precipitates in HR52. Effect of Mn additions (HR58 through HR61) on the transformation temperatures was determined experimentally...
Abstract
View Paper
PDF
Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650°C for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 496-505, October 21–24, 2019,
... strain (ε p + ε c ) is high. coarsening creep coefficient creep strain machine learning nickel-based superalloys phase field simulation plastic strain rafting kinetics tensile stress Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24...
Abstract
View Paper
PDF
Directional coarsening of the γ' phase (rafting) in Ni-based single crystal superalloys during creep at 1273 K was simulated by the phase-field method. The inelastic strain introduced in the γ phase was assumed to be composed of plastic strain (ε p ) and creep strain (ε c ). The simulations were performed with various sets of values of material parameters and the magnitude of external tensile stress. We let a feed-forward neural network learn the simulation data in order to enable fast and exhaustive prediction of the time to rafting, t raft . From the analysis based on the trained neural network, it has been shown that t raft becomes longer with increasing magnitude of γ/γ' lattice misfit, with decreasing creep coefficient, and with increasing yield stress of the γ phase (σγ ys ). The sensitivity of t raft to σ γ ys is high when the ratio of ε p to the total inelastic strain (ε p + ε c ) is high.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 197-207, October 3–5, 2007,
... Abstract The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc...
Abstract
View Paper
PDF
The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc, the evolution of these precipitates during the thermal treatment of the COST 522 steel CB8 is simulated from the cooling process after cast solidification to heat treatment and service up to the aspired service life time of 100.000h. On basis of the results obtained from these simulations in combination with a newly implemented model for evaluation of the maximum threshold stress by particle strengthening, the strengthening effect of each individual precipitate phase, as well as the combined effect of all phases is evaluated - a quantification of the influence of Z-Phase formation on the long-term creep behaviour is thus made possible. This opens a wide field of application for alloy development and leads to a better understanding of the evolution of microstructural components as well as the mechanical properties of these complex alloys.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service...
Abstract
View Paper
PDF
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 360-369, October 21–24, 2019,
... simulation of precipitate evolution: Ghoniem uses experimentally determined coarsening parameters. In our treatment we apply thermodynamic precipitate simulations carried out with the software MatCalc, which is based on the SFFK concept assuming maximum entropy production. The calculations produce detailed...
Abstract
View Paper
PDF
This work deals with the potential of microstructurally based modeling of the creep deformation of martensitic steels. The motivation for the work stems from the ever increasing demand for higher efficiency and better reliability of modern thermal power plants. Service temperatures of 600°C and stress levels up to 100 MPa are currently the typical requirements on critical components. High creep and oxidation resistance are the main challenges for a lifetime 10+ years in steam atmosphere. New materials may fulfill these requirements; however, the save prediction of the creep resistance is a difficult challenge. The model presented in this work takes into consideration the initial microstructure of the material, its evolution during thermal and mechanical exposure and the link between microstructural evolution and creep deformation rate. The model includes the interaction between the relevant microstructural constituents such as precipitates, grain- lath- and subgrain boundaries and dislocations. In addition, the material damage is included into the model. The applicability of the model is then demonstrated on standard creep resistant alloys. Contrary to phenomenological models, this approach can be tested against microstructural data of creep loaded samples and thus provides higher reliability. Nevertheless, potential improvements are discussed and future developments are outlined.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 147-158, October 15–18, 2024,
... delta-ferrite formation. Boron is utilized to reduce the coarsening kinetics of the M23C6 carbides. Silicon and Mn are added for resistance to oxidation and corrosion. Finally, Cr is considered carefully since it is needed for oxidation resistance but is known to promote the formation of the detrimental...
Abstract
View Paper
PDF
Increasing the temperature capabilities of ferritic/martensitic 9-12% Cr steels can help in increasing the operating temperature of land-based turbines and minimize the use of expensive high-temperature alloys in the hot section. A creep resistant martensitic steel, JMP, was developed with the potential to operate at or above 650°C. The design of the alloys originated from computational modeling for phase stability and precipitate strengthening using fifteen constituent elements. Cobalt was used for increased solid solution strengthening, Si for oxidation resistance and different W and Mo concentrations for matrix strength and stability. The JMP steels showed increases in creep life compared to MARBN/SAVE12AD at 650°C for testing at various stresses between 138 MPa and 207 MPa. On a Larson-Miller plot, the performance of the JMP steels surpasses that of state-of-the-art MARBN steel. Approximately 21 years of cumulative creep data are reported for the JMP steels which encompasses various compositions. The relationships between composition-microstructure-creep properties are discussed including characterization of microstructures after >20,000 hours in creep.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
... and the boron nitrides were identified. The diameters and the number densities of M23C6 were evaluated and analyzed. Under the assumption that the particle coarsening follows the well-known Ostwald ripening equation (1): = (1) where r1 is the precipitate radius at time t1 and r0 is the precipitate radius...
Abstract
View Paper
PDF
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 220-230, October 3–5, 2007,
... of follows typical r 3 t kinetics of diffusion-controlled particle growth. It is also an evidence in Fig. 5 that the particle coarsens more rapidly as the aging temperature increases to 760°C. In order to study the precipitation behavior, the samples as solution-annealed were aged at different high...
Abstract
View Paper
PDF
A new nickel-base superalloy, Inconel alloy 740, is being developed for ultra-supercritical (USC) boiler applications operating above 750°C, designed to meet critical requirements for long-term high-temperature stress rupture strength (100 MPa for 10 5 hours) and corrosion resistance (2 mm/2 × 10 5 hours). Experimental investigations revealed key structural changes at elevated temperatures, including γ coarsening, γ' to η transformation, and G phase formation. To enhance strengthening effects and structural stability, researchers conducted a systematic optimization process based on thermodynamic calculations, implementing small adjustments to several alloying elements and designing modified alloy compositions. Comprehensive testing examined the long-term structural stability of these modifications, with investigations conducted up to 5,000 hours at 750 and 800°C, and 1,000 hours at 850°C. Mechanical property and oxidation resistance tests compared the modified alloys with the original Inconel alloy 740, yielding preliminary results that demonstrate minimal modifications can improve stress rupture strength while maintaining corrosion resistance. Microstructural examinations further confirmed the enhanced thermal stability of the modified alloy, positioning Inconel alloy 740 as a promising candidate for USC boiler applications at 750°C or higher temperatures.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
... to the formation of -ferrite, z-phase and sigma phase may occur. The formation of these phases is usually connected with weakening of grain boundary adhesion, consumption of a necessary alloying element i.e. Cr and Nb, as well as precipitate coarsening and subsequent embrittlement. The alloying concept...
Abstract
View Paper
PDF
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
1