Skip Nav Destination
Close Modal
Search Results for
coal-fired boilers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 200 Search Results for
coal-fired boilers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
... tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years...
Abstract
View Paper
PDF
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 274-290, October 25–28, 2004,
... Abstract The power generation industry worldwide aims to develop coal-fired boilers operating at much higher efficiencies than current supercritical plants. This increased efficiency is expected through ultrasupercritical steam conditions, requiring new materials for critical components...
Abstract
View Paper
PDF
The power generation industry worldwide aims to develop coal-fired boilers operating at much higher efficiencies than current supercritical plants. This increased efficiency is expected through ultrasupercritical steam conditions, requiring new materials for critical components. To limit the use of expensive alloying materials, it is necessary to maximize the strength and corrosion capabilities across the material spectrum from ferritic to austenitic and nickel-based alloys. Sandvik Materials Technology has developed an austenitic alloy, Sanicro 25, with excellent high-temperature strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status, and properties.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 428-440, October 25–28, 2004,
... Abstract Ultrasupercritical (USC) coal-fired boilers, currently under study, will be required to utilize a variety of new, high strength alloys. These alloys will have improved mechanical properties compared with more traditional boiler materials and so will be suitable for operation in higher...
Abstract
View Paper
PDF
Ultrasupercritical (USC) coal-fired boilers, currently under study, will be required to utilize a variety of new, high strength alloys. These alloys will have improved mechanical properties compared with more traditional boiler materials and so will be suitable for operation in higher temperature service. However, environmental resistance, i.e. internal steam oxidation and external coal-ash corrosion, will be a factor limiting application of some materials under consideration. In those cases, the operating range of lower-cost alloys can be significantly extended by the use of surface modification techniques. This paper will review potential surface modification techniques and report on early test results of some laboratory evaluations.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 1-15, October 3–5, 2007,
... steam-side oxidation ultrasupercritical coal-fired boilers weldability Advances in Materials Technology for Fossil Power Plants Proceedings from the Fifth International Conference R. Viswanathan, D. Gandy, K. Coleman, editors, p 1-15 Copyright © 2008 Electric Power Research Institute Distributed...
Abstract
View Paper
PDF
One of the pathways for achieving the goal of utilizing the available large quantities of indigenous coal, at the same time reducing emissions, is by increasing the efficiency of power plants by utilizing much higher steam conditions. The US Ultra-Supercritical Steam (USC) Project funded by US Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) promises to increase the efficiency of pulverized coal-fired power plants by as much as nine percentage points, with an associated reduction of CO 2 emissions by about 22% compared to current subcritical steam power plants, by increasing the operating temperature and pressure to 760°C (1400°F) and 35 MPa (5000 psi), respectively. Preliminary analysis has shown such a plant to be economically viable. The current project primarily focuses on developing the materials technology needed to achieve these conditions in the boiler. The scope of the materials evaluation includes mechanical properties, steam-side oxidation and fireside corrosion studies, weldability and fabricability evaluations, and review of applicable design codes and standards. These evaluations are nearly completed, and have provided the confidence that currently-available materials can meet the challenge. While this paper deals with boiler materials, parallel work on turbine materials is also in progress. These results are not presented here in the interest of brevity.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 968-981, October 3–5, 2007,
..., p 968-981 Copyright © 2008 Electric Power Research Institute Distributed by ASM International®. All rights reserved. www.asminternational.org httpsdoi.org/10.31399/asm.cp.am-epri-2007p0968 Overview of Oxy-Combustion Technology for Utility Coal-Fired Boilers Brian Vitalis Riley Power Inc. (a Babcock...
Abstract
View Paper
PDF
With nearly half of the world's electricity generation fueled by coal and an increasing focus on limiting carbon dioxide emissions, several technologies are being evaluated and developed to capture and prevent such emissions while continuing to use this primary fossil energy resource. One method aimed at facilitating the capture and processing of the resulting carbon dioxide product is oxy-combustion. With appropriate adjustments to the process, the approach is applicable to both new and existing power plants. In oxy-combustion, rather than introducing ambient air to the system for burning the fuel, oxygen is separated from the nitrogen and used alone. Without the nitrogen from the air to dilute the flue gas, the flue gas volume leaving the system is significantly reduced and consists primarily of carbon dioxide and water vapor. Once the water vapor is reduced by condensation, the purification and compression processes otherwise required for carbon dioxide transport and sequestration are significantly reduced. As an introduction to and overview of this technology, the paper summarizes the basic concepts and system variations, for both new boiler and retrofit applications, and also serves as an organized review of subsystem issues identified in recent literature and publications. Topics such as the air separation units, flue gas recirculation, burners and combustion, furnace performance, emissions, air infiltration issues, and materials issues are introduced.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 256-273, October 25–28, 2004,
... coal ash coal fired ultra supercritical boilers mechanical properties microstructural stability nickel alloy tubes nickel-chromium-cobalt alloys steam corrosion resistance superheater tubing weldability httpsdoi.org/10.31399/asm.cp.am-epri-2004p0256 Copyright © 2005 ASM International® 256...
Abstract
View Paper
PDF
Utilities worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. Part of the solution is achieved by increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction. In this paper, a new nickel-base tube alloy, INCONEL alloy 740, meeting this challenge is characterized with emphasis on mechanical properties, coal ash and steam corrosion resistance as well as weldability. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology employed to arrive at the current chemical composition. Brief mention is made of certain current and future alloy characterization efforts and potential environmental benefits to be expected should the boiler technology utilizing INCONEL alloy 740 be adopted.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 993-1000, October 3–5, 2007,
... corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling...
Abstract
View Paper
PDF
As the demand for worldwide electricity generation grows, pulverized coal steam generator technology is expected to be a key element in meeting the needs of the utility power generation market. The reduction of greenhouse gas emissions, especially CO 2 emissions, is vital to the continued success of coal-fired power generation in a marketplace that is expected to demand near-zero emissions in the near future. Oxycombustion is a technology option that uses pure oxygen, and recycled flue gas, to fire the coal. As a result, this system eliminates the introduction of nitrogen, which enters the combustion process in the air, and produces a highly-concentrated stream of CO 2 that can readily be captured and sequestered at a lower cost than competing post-combustion capture technologies. Oxycombustion can be applied to a variety of coal-fired technologies, including supercritical and ultra-supercritical pulverized coal boilers. The incorporation of oxycombustion technology in these systems raises some new technical challenges, especially in the area of advanced boiler materials. Local microclimates generated near and at the metal interface will influence and ultimately govern corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling characteristics in the superheater and heat recovery sections of the steam generator. The continuous recirculation of the flue gases in the boiler, may lead to increasing concentrations of deleterious elements such as sulfur, chlorine, and moisture. This paper identifies the materials considerations of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, October 15–18, 2024,
... and manage the wall thinning of boiler tubes. boiler tubes coal-fired power plant boilers corrosion inspection equipment lifetime evaluation wall thinning Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024...
Abstract
View Paper
PDF
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1025-1037, October 22–25, 2013,
... Abstract The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than...
Abstract
View Paper
PDF
The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC) boiler, which is the latest boiler design, currently under development. As with all high nickel alloys, welding of alloy 740H can be very challenging, even to an experienced welder. Weldability challenges are compounded when considering that the alloy may be used in steam headers, where critical, thick-section and stub-to-header weld joints are present. This paper is intended to describe the proper procedures developed over years of study that will allow for ASME code quality welds in alloy 740H with matching composition filler metals.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 268-287, August 31–September 3, 2010,
... Abstract A comprehensive fireside corrosion study was undertaken to better understand the corrosion mechanisms operating on the superheaters and lower furnace walls of advanced coal- fired utility boilers. The study intended to evaluate the fireside conditions generated from burning eight U.S...
Abstract
View Paper
PDF
A comprehensive fireside corrosion study was undertaken to better understand the corrosion mechanisms operating on the superheaters and lower furnace walls of advanced coal- fired utility boilers. The study intended to evaluate the fireside conditions generated from burning eight U.S. coals individually in a pilot-scale combustion facility. These coals consisted of a wide range of compositions that are of interest to the utility industry. The combustion facility was capable of producing the realistic conditions of staged combustion existing in coal-fired utility boilers. During each of the combustion tests, gas and deposit samples were collected and analyzed via in-furnace probing at selected locations corresponding to the waterwalls and superheaters. Testing of five of the eight coal groups has been completed to date. Results of these online measurements helped reveal the dynamic nature of the combustion environments produced in coal-fired boilers. Coexistence of reducing and oxidizing species in the gas phase was evident in both combustion zones, indicating that thermodynamic equilibrium of the overall combustion gases was generally unattainable. However, the amount of sulfur released from coal to form sulfur-bearing gaseous species in both the reducing and oxidizing zones was in a linear relationship with the amount of the total sulfur in coal, independent of the original sulfur forms. Such a linear relationship was also observed for the measured HCl gas relative to the coal chlorine content. However, the release of sulfur from coal to the gas phase appeared to be slightly faster and more complete than that of chlorine in the combustion zone, while both sulfur and chlorine were completely released and reacted to form respective gaseous species in the oxidizing zone. The information of sulfur and chlorine release processes in coal combustion generated from this study is considered new to the industry and provides valuable insight to the understanding of fireside corrosion mechanisms.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
... Abstract A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 488-506, October 3–5, 2007,
... Abstract The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces...
Abstract
View Paper
PDF
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion resistance of candidate materials through field testing. Evaluated materials include ferritic steels (SAVE12, P92, HCM12A), austenitic stainless steels (Super304H, 347HFG, HR3C), and high-nickel alloys (Haynes 230, CCA617, Inconel 740, HR6W), along with protective coatings (weld overlays, diffusion coatings, laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F). Promising materials were installed on retractable corrosion probes in three utility boilers burning different coal types. The probes maintained metal temperatures between 650°C (1200°F) and 870°C (1600°F). This paper presents new fireside corrosion probe results after approximately one year of exposure for Midwestern and Western coal types.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 892-902, October 22–25, 2013,
... Abstract Using oxygen, rather than air, in coal-fired boilers has been studied for several years as a strategy to reduce NOx and concentrate CO 2 for capture. In combination with flue gas recirculation, higher levels of CO 2 are expected but increased H 2 O and SO 2 levels also may occur...
Abstract
View Paper
PDF
Using oxygen, rather than air, in coal-fired boilers has been studied for several years as a strategy to reduce NOx and concentrate CO 2 for capture. In combination with flue gas recirculation, higher levels of CO 2 are expected but increased H 2 O and SO 2 levels also may occur. In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures up to advanced ultrasupercritical conditions. Using 500h exposures, no consistent negative effect was found for switching to the oxy-firing environment with the same synthetic ash. For model Fe-Cr alloys, 30%Cr was needed to form a thin protective reaction product across this temperature range. Among the commercial stainless steels, 310-type stainless steel showed low reaction rates with the maximum attack at 650°C. At higher temperatures, the depth of attack on Fe-base type 310 stainless steel was less than for Ni-base alloy 740. Initially, this difference was attributed to the Al and Ti additions in alloy 740. However, cast and hot rolled model Ni-18Cr and -22Cr alloys with various Al and Ti additions showed decreased metal loss with increasing Al and Ti additions in the oxy-firing environment at 700° and 800°C. As expected, metal loss was very sensitive to Cr content. A second set of model alloys also examined the effect of Co and Mo.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 471-487, October 3–5, 2007,
... components for coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. Operation at ultrasupercritical (USC) conditions (steam temperatures up to 760°C (1400°F)) will necessitate the use of new advanced ferritic materials, austenitic stainless...
Abstract
View Paper
PDF
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are sponsoring the “Boiler Materials for Ultrasupercritical Coal Power Plants” program. This program is aimed at identifying, evaluating, and qualifying the materials needed for the construction of critical components for coal-fired boilers capable of operating at much higher efficiencies than the current generation of supercritical plants. Operation at ultrasupercritical (USC) conditions (steam temperatures up to 760°C (1400°F)) will necessitate the use of new advanced ferritic materials, austenitic stainless steels and nickel-based alloys. As well as possessing the required mechanical properties and fireside corrosion resistance, these materials must also exhibit acceptable steamside oxidation resistance. As part of the DOE/OCDO program, steamside oxidation testing is being performed at the Babcock & Wilcox Research Center. More than thirty ferritic, austenitic and nickel-based materials have been exposed for up to 4,000 hours in flowing steam at temperatures between 650°C (1202°F) and 800°C (1472°F). In addition to wrought materials, steamside oxidation tests have been conducted on weld metals, coated materials and materials given special surface treatments. Exposed specimens were evaluated to determine oxidation kinetics and oxide morphology. High chromium ferritic, austenitic and nickel-based alloys displayed very good oxidation behavior over the entire temperature range due to the formation of a dense chromium oxide. With increasing steam temperature, low chromium ferritic materials experienced breakaway oxidation, and low chromium austenitic materials experienced significant oxide exfoliation. Special surface treatments that were applied to these materials appeared to have a beneficial effect on their oxidation behavior.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 310-317, October 11–14, 2016,
... corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700°C material temperature. austenitic...
Abstract
View Paper
PDF
Energy requirements and environmental concerns have promoted a development in higher-efficiency coal fired power technologies. Advanced ultra-super critical power plant with an efficiency of higher than 50% is the target in the near future. The materials to be used due to the tougher environments become therefore critical issues. This paper provides a review on a newly developed advanced high strength heat resistant austenitic stainless steel, Sandvik Sanicro 25, for this purpose. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than any other austenitic stainless steels available today, and has recently obtained two AMSE code cases. This makes it an interesting option in higher pressures/temperature applications. In this paper, the material development, structure stability, creep strength, steam oxidation and hot corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700°C material temperature.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 3-19, October 25–28, 2004,
... Abstract The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much...
Abstract
View Paper
PDF
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732°C(1350°F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620°C (1150°F) and nickel-based alloys suitable up to 700°C (1300°F). In this project, the maximum temperature capabilities of these and other available high- temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This paper provides a status report on the progress to date achieved in this project.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 513-522, October 21–24, 2019,
... materials has been demonstrated by the component test in the commercial coal fired boiler as the part of the A-USC project. coal-fired boilers creep deformation creep strength Laves phase microstructure nickel-chromium-cobalt-molybdenum alloys Joint EPRI 123HiMAT International Conference...
Abstract
View Paper
PDF
Development of the advanced USC (A-USC) boiler technology has been promoted in recent years, which targets 700°C steam condition. HR6W (Ni-23Cr-7W-Ti-Nb-25Fe) and HR35 (Ni-30Cr-6W-Ti-15Fe) have been developed for A-USC boiler tubes and pipes. The former alloy is mainly strengthened by Fe 2 W type Laves phase. The latter one employs precipitation strengthening of α-Cr phase in addition to Laves phase. Characteristic alloy design of both alloys, which does not use precipitation strengthening of γ′ phase (Ni 3 Al), leads to superior ductility and resistance to stress-relaxation cracking. Stability of creep strength and microstructure has been confirmed by long-term creep rupture tests. The 100,000h average creep rupture strength of HR6W is 85MPa at 700C. That of HR35 is 126MPa at 700°C which is comparable with conventional Alloy617. Tubes of both alloys have been evaluated by the component test in Japanese national A-USC project with γ′ hardened Alloy617 and Alloy263. Detailed creep strength, deformation behavior and microstructural evolution of these alloys are described from the viewpoint of the difference in strengthening mechanisms. Capability of these alloys for A-USC boiler materials has been demonstrated by the component test in the commercial coal fired boiler as the part of the A-USC project.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
...) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally...
Abstract
View Paper
PDF
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 161-168, October 11–14, 2016,
... Abstract INCONEL 740H has been developed by Special Metals for use in Advanced Ultra Super Critical (A-USC) coal fired boilers. Its creep strength performance is currently amongst the ‘best in class’ of nickel based alloys, to meet the challenge of operating in typical A-USC steam temperatures...
Abstract
View Paper
PDF
INCONEL 740H has been developed by Special Metals for use in Advanced Ultra Super Critical (A-USC) coal fired boilers. Its creep strength performance is currently amongst the ‘best in class’ of nickel based alloys, to meet the challenge of operating in typical A-USC steam temperatures of 700°C at 35 MPa pressure. Whilst the prime physical property of interest for INCONEL 740H has been creep strength, it exhibits other physical properties worthy of consideration in other applications. It has a thermal expansion co-efficient that lies between typical values for Creep Strength Enhanced Ferritic (CSEF) steels and austenitic stainless steels. This paper describes the validation work in support of the fabrication of a pipe transition joint that uses INCONEL 740H pipe, produced in accordance with ASME Boiler Code Case 2702, as a transition material to join P92 pipe to a 316H stainless steel header. The paper gives details of the material selection process, joint design and the verification process used for the joint.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 96-109, August 31–September 3, 2010,
... Abstract Inconel alloy 740 was initially developed to enable the design of coal-fired boilers capable of operating at 700°C steam temperature and high pressure. The alloy successfully met the European program's targets, including 100,000-hour rupture life at 750°C and 100 MPa stress, and less...
Abstract
View Paper
PDF
Inconel alloy 740 was initially developed to enable the design of coal-fired boilers capable of operating at 700°C steam temperature and high pressure. The alloy successfully met the European program's targets, including 100,000-hour rupture life at 750°C and 100 MPa stress, and less than 2 mm metal loss in 200,000 hours of superheater service. However, thick section fabrication revealed weldability challenges, specifically grain boundary microfissuring in the heat affected zone (HAZ) of the base metal. This paper describes the development of a modified variant with significantly improved resistance to HAZ microfissuring and enhanced thermal stability, while maintaining desirable properties. The formulation process is detailed, and properties of materials produced within the new composition range are presented. Additionally, the microstructural stability of the original and modified alloy compositions is compared, demonstrating the advancements achieved in this critical material for next-generation power plants.
1