Skip Nav Destination
Close Modal
Search Results for
coal-ash corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 58
Search Results for coal-ash corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
.... air-firing combustion carbon dioxide carbonates coal-ash corrosion resistance coal-fired boilers corrosion rates corrosion test oxy-firing combustion reheaters superheaters weld overlays Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International...
Abstract
View Papertitled, Comparison of <span class="search-highlight">Coal</span>-<span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Resistance of Alloys Exposed to Advanced Air-<span class="search-highlight">Coal</span> and Oxy-<span class="search-highlight">Coal</span> Combustion Environments
View
PDF
for content titled, Comparison of <span class="search-highlight">Coal</span>-<span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Resistance of Alloys Exposed to Advanced Air-<span class="search-highlight">Coal</span> and Oxy-<span class="search-highlight">Coal</span> Combustion Environments
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 310-322, October 25–28, 2004,
... Abstract The “Coal Ash Corrosion Resistant Materials Testing Program” by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE), and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant provides full-scale in-situ testing of advanced boiler...
Abstract
View Papertitled, <span class="search-highlight">Coal</span> <span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Resistant Materials Testing Program: Evaluation of the Second Section Removed in August 2003
View
PDF
for content titled, <span class="search-highlight">Coal</span> <span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Resistant Materials Testing Program: Evaluation of the Second Section Removed in August 2003
The “Coal Ash Corrosion Resistant Materials Testing Program” by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE), and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant provides full-scale in-situ testing of advanced boiler superheater materials to address fireside corrosion, a key issue for improving efficiency in new coal-fired plants and service life in existing ones. In 1998, B&W developed a system with three identical sections containing multiple segments of twelve different materials from contributors like Oak Ridge National Laboratory (ORNL), cooled by reheat steam and installed in 1999 above the furnace entrance in the Niles Plant 110 MWe Unit #1 firing high-sulfur Ohio coal to test materials at advanced supercritical steam temperatures (1100°F+) in corrosive conditions. The first section was evaluated after 29 months in 2001, the second in 2003, and the final section is expected for removal in 2005. This paper outlines the program, test system, and materials, and it presents the evaluation results for the first two sections.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 303-311, August 31–September 3, 2010,
... Abstract Coal ash corrosion testing was conducted on six solution-treated nickel-based alloy plates (Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W [45Ni-23Cr-7W], and HR35 [50Ni-30Cr-4W-Ti]) intended for advanced-USC boilers, along with conventional ferritic and austenitic stainless tubes...
Abstract
View Papertitled, <span class="search-highlight">Coal</span> <span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Properties of Ni-Based Alloy for Advanced-USC Boilers
View
PDF
for content titled, <span class="search-highlight">Coal</span> <span class="search-highlight">Ash</span> <span class="search-highlight">Corrosion</span> Properties of Ni-Based Alloy for Advanced-USC Boilers
Coal ash corrosion testing was conducted on six solution-treated nickel-based alloy plates (Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W [45Ni-23Cr-7W], and HR35 [50Ni-30Cr-4W-Ti]) intended for advanced-USC boilers, along with conventional ferritic and austenitic stainless tubes for comparison. Tests used synthetic coal ash (Na 2 SO 4 , K 2 SO 4 , Fe 2 O 3 ) with varying SO 2 concentrations (0.02-1.00 vol%). Results showed maximum metal loss at 700°C, with higher SO 2 levels causing increased corrosion. Materials with higher chromium content demonstrated better corrosion resistance, suggesting chromium content is a crucial factor in material selection for these applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 224-234, October 11–14, 2016,
... strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required...
Abstract
View Papertitled, Development of Ni-Base Superalloy USC141 for 700°C Class A-USC Boiler Tubes
View
PDF
for content titled, Development of Ni-Base Superalloy USC141 for 700°C Class A-USC Boiler Tubes
Recently, a γ’ precipitation strengthened Ni-base superalloy, USC141, was developed for 700°C class A-USC boiler tubes as well as turbine blades. In boiler tube application, the creep rupture strength of USC141 was much higher than that of Alloy617, and the 105 hours’ creep rupture strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required for tubes at around 700°C. It is known that coal ash corrosion resistance depends on the contents of Cr and Mo in Ni-base superalloys. Therefore the effect of Cr and Mo contents in USC141 on coal ash corrosion resistance, tensile properties, and creep rupture strengths were investigated. As a result, the modified USC141 containing not less than 23% Cr and not more than 7% Mo showed better hot corrosion resistance than the original USC141. This modified alloy also showed almost the same mechanical properties as the original one. Furthermore the trial production of the modified USC141 tubes is now in progress.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... Abstract Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals...
Abstract
View Papertitled, Manufacturing Demonstration of Inconel Alloy 740H for A-USC Boilers
View
PDF
for content titled, Manufacturing Demonstration of Inconel Alloy 740H for A-USC Boilers
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 256-273, October 25–28, 2004,
... Abstract Utilities worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. Part of the solution is achieved by increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction...
Abstract
View Papertitled, The Development of Inconel Alloy 740 for use as Superheater Tubing in <span class="search-highlight">Coal</span> Fired Ultra Supercritical Boilers
View
PDF
for content titled, The Development of Inconel Alloy 740 for use as Superheater Tubing in <span class="search-highlight">Coal</span> Fired Ultra Supercritical Boilers
Utilities worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. Part of the solution is achieved by increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction. In this paper, a new nickel-base tube alloy, INCONEL alloy 740, meeting this challenge is characterized with emphasis on mechanical properties, coal ash and steam corrosion resistance as well as weldability. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology employed to arrive at the current chemical composition. Brief mention is made of certain current and future alloy characterization efforts and potential environmental benefits to be expected should the boiler technology utilizing INCONEL alloy 740 be adopted.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 320-337, October 3–5, 2007,
... of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials...
Abstract
View Papertitled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
View
PDF
for content titled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall applications, the corrosion resistance has been demonstrated in both laboratory and field tests conducted over the last 5 years. In addition to corrosion resistance, the Alloy 33 has also shown that it is also resistant to cracking (although no material is 100% immune). In the superheater/reheater, the use of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials (such as FM-72) and is less expensive. As a result of these favorable experiences, Alloy 33 is now being used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 428-440, October 25–28, 2004,
... temperature service. However, environmental resistance, i.e. internal steam oxidation and external coal-ash corrosion, will be a factor limiting application of some materials under consideration. In those cases, the operating range of lower-cost alloys can be significantly extended by the use of surface...
Abstract
View Papertitled, Use of Surface Modification of Alloys for Ultrasupercritical <span class="search-highlight">Coal</span>-fired Boilers
View
PDF
for content titled, Use of Surface Modification of Alloys for Ultrasupercritical <span class="search-highlight">Coal</span>-fired Boilers
Ultrasupercritical (USC) coal-fired boilers, currently under study, will be required to utilize a variety of new, high strength alloys. These alloys will have improved mechanical properties compared with more traditional boiler materials and so will be suitable for operation in higher temperature service. However, environmental resistance, i.e. internal steam oxidation and external coal-ash corrosion, will be a factor limiting application of some materials under consideration. In those cases, the operating range of lower-cost alloys can be significantly extended by the use of surface modification techniques. This paper will review potential surface modification techniques and report on early test results of some laboratory evaluations.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1422-1431, October 22–25, 2013,
... ferritic and five types of conventional austenitic stainless tubes were also tested to compare their corrosion properties. Hot corrosion tests were conducted in order to assess the effects of temperature, material composition and coal ash composition on hot corrosion. The maximum average metal loss...
Abstract
View Papertitled, Hot <span class="search-highlight">Corrosion</span> Properties of Ni-Based Alloys Used in an Advanced-USC Boiler
View
PDF
for content titled, Hot <span class="search-highlight">Corrosion</span> Properties of Ni-Based Alloys Used in an Advanced-USC Boiler
Six types of solution treated Ni-based alloy plates having a thickness of 25mm, namely Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W (45Ni-23Cr-7W) and HR35 (50Ni-30Cr-4W-Ti) for advanced-USC boilers, were subjected to corrosion testing. In addition, three types of conventional ferritic and five types of conventional austenitic stainless tubes were also tested to compare their corrosion properties. Hot corrosion tests were conducted in order to assess the effects of temperature, material composition and coal ash composition on hot corrosion. The maximum average metal loss and the maximum corrosion rate were observed under 700°C test conditions. Cr content in the materials played an important role in the corrosion rate, with higher Cr content materials tending to show lower rates. However, Ni-based alloy materials showed slightly greater corrosion rates than those of stainless steels having equivalent Cr content in the over-700°C test condition. It was considered that rich Ni in the alloys easily reacted with sulfur, thus forming corrosion products having low melting points, such that corrosion was accelerated. The concentration of Fe 2 O 3 and NiO in the synthetic coal ash was also observed to affect the corrosion rate.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 488-506, October 3–5, 2007,
..., laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F...
Abstract
View Papertitled, Effects of Fuel Composition and Temperature on Fireside <span class="search-highlight">Corrosion</span> Resistance of Advanced Materials in Ultra-Supercritical <span class="search-highlight">Coal</span>-Fired Power Plants
View
PDF
for content titled, Effects of Fuel Composition and Temperature on Fireside <span class="search-highlight">Corrosion</span> Resistance of Advanced Materials in Ultra-Supercritical <span class="search-highlight">Coal</span>-Fired Power Plants
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion resistance of candidate materials through field testing. Evaluated materials include ferritic steels (SAVE12, P92, HCM12A), austenitic stainless steels (Super304H, 347HFG, HR3C), and high-nickel alloys (Haynes 230, CCA617, Inconel 740, HR6W), along with protective coatings (weld overlays, diffusion coatings, laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F). Promising materials were installed on retractable corrosion probes in three utility boilers burning different coal types. The probes maintained metal temperatures between 650°C (1200°F) and 870°C (1600°F). This paper presents new fireside corrosion probe results after approximately one year of exposure for Midwestern and Western coal types.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 288-302, August 31–September 3, 2010,
... in this program. This review, and results of the Coal Ash Corrosion Materials Program(2), provided guidance regarding the design of the test loops to be inserted in the Niles boiler. The nominal composition of the candidate monolithic tube materials is provided in Table 1. 289 Nominal Composition (wt%) C Mn Si Al...
Abstract
View Papertitled, In Situ <span class="search-highlight">Corrosion</span> Testing of Ultrasupercritical Tube and Weld Overlay Materials
View
PDF
for content titled, In Situ <span class="search-highlight">Corrosion</span> Testing of Ultrasupercritical Tube and Weld Overlay Materials
The Department of Energy and Ohio Coal Development Office jointly sponsored research to evaluate materials for advanced ultrasupercritical (A-USC) coal power plants, testing both monolithic tube materials and weld overlay combinations under real operating conditions. Testing was conducted in the highly corrosive, high-sulfur coal environment of Reliant Energy's Niles Plant Unit 1 boiler in Ohio. After 12 months of exposure, researchers evaluated six monolithic tube materials and twelve weld overlay/tube combinations for their high-temperature strength, creep resistance, and corrosion resistance in both steam-side and fire-side environments. Among the monolithic materials, Inconel 740 demonstrated superior corrosion resistance with the lowest wastage rate, while EN72 emerged as the most effective weld overlay material across various substrates, offering consistent protection against corrosion.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 982-992, October 3–5, 2007,
... to near neutral, its corrosivity can be much reduced. No research data are available in the open literature pertinent to the role of coal ash in CO2 corrosion. Therefore, Task 1 is intended to address this unexplored area and demonstrate the potential effect of coal ash on carbonic acid corrosion. Task 2...
Abstract
View Papertitled, Fireside <span class="search-highlight">Corrosion</span> Study Using B&amp;W Clean Environment Development Facility for Oxy-<span class="search-highlight">Coal</span> Combustion Systems
View
PDF
for content titled, Fireside <span class="search-highlight">Corrosion</span> Study Using B&amp;W Clean Environment Development Facility for Oxy-<span class="search-highlight">Coal</span> Combustion Systems
The development of oxy-fuel combustion technology for coal-based power generation may produce combustion products different from those typically found in traditional boilers. In particular, the enrichment of CO 2 and perhaps SO3 could alter the chemical equilibrium to favor the formation of certain carbonates and sulfates in the deposit. Higher concentrations of these gases would also increase the potential for condensation of carbonic and sulfuric acids in lower-temperature areas of the boiler. To address these concerns, B&W has instituted a comprehensive research program to better understand the effect of oxy-coal combustion on fireside corrosion. The scope of this program includes gas and deposit analyses of actual combustion products sampled from B&W's Clean Environment Development Facility (CEDF) during the oxy-coal combustion of three commercial coals. The sampling locations consist of regions representing the lower furnace, superheater bank, and pulverizer outlet. Following the gas and deposit analyses, a series of laboratory corrosion tests will be performed to expose candidate alloys and coatings to conditions simulating the oxy-coal combustion environments. The technical approaches and results of the fireside corrosion program obtained to date are discussed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 912-923, October 11–14, 2016,
... not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air...
Abstract
View Papertitled, Fireside <span class="search-highlight">Corrosion</span> and Steamside Oxidation Behavior of HAYNES 282 Alloy for A-USC Applications
View
PDF
for content titled, Fireside <span class="search-highlight">Corrosion</span> and Steamside Oxidation Behavior of HAYNES 282 Alloy for A-USC Applications
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 268-287, August 31–September 3, 2010,
... boiler systems, sulfidation attack will likely be further intensified as well. In the upper furnace, higher steam temperatures will raise the metal temperatures of superheaters and reheaters, thus increasing the propensity for coal ash corrosion (also known as hot corrosion).5 The highest coal ash...
Abstract
View Papertitled, Online Gas Measurements in a Pilot-Scale Combustion Facility for Fireside <span class="search-highlight">Corrosion</span> Study
View
PDF
for content titled, Online Gas Measurements in a Pilot-Scale Combustion Facility for Fireside <span class="search-highlight">Corrosion</span> Study
A comprehensive fireside corrosion study was undertaken to better understand the corrosion mechanisms operating on the superheaters and lower furnace walls of advanced coal- fired utility boilers. The study intended to evaluate the fireside conditions generated from burning eight U.S. coals individually in a pilot-scale combustion facility. These coals consisted of a wide range of compositions that are of interest to the utility industry. The combustion facility was capable of producing the realistic conditions of staged combustion existing in coal-fired utility boilers. During each of the combustion tests, gas and deposit samples were collected and analyzed via in-furnace probing at selected locations corresponding to the waterwalls and superheaters. Testing of five of the eight coal groups has been completed to date. Results of these online measurements helped reveal the dynamic nature of the combustion environments produced in coal-fired boilers. Coexistence of reducing and oxidizing species in the gas phase was evident in both combustion zones, indicating that thermodynamic equilibrium of the overall combustion gases was generally unattainable. However, the amount of sulfur released from coal to form sulfur-bearing gaseous species in both the reducing and oxidizing zones was in a linear relationship with the amount of the total sulfur in coal, independent of the original sulfur forms. Such a linear relationship was also observed for the measured HCl gas relative to the coal chlorine content. However, the release of sulfur from coal to the gas phase appeared to be slightly faster and more complete than that of chlorine in the combustion zone, while both sulfur and chlorine were completely released and reacted to form respective gaseous species in the oxidizing zone. The information of sulfur and chlorine release processes in coal combustion generated from this study is considered new to the industry and provides valuable insight to the understanding of fireside corrosion mechanisms.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 892-902, October 22–25, 2013,
.... In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures...
Abstract
View Papertitled, Effect of Alloy Composition on Fireside <span class="search-highlight">Corrosion</span> Rates in Air- and Oxy-Fired Systems
View
PDF
for content titled, Effect of Alloy Composition on Fireside <span class="search-highlight">Corrosion</span> Rates in Air- and Oxy-Fired Systems
Using oxygen, rather than air, in coal-fired boilers has been studied for several years as a strategy to reduce NOx and concentrate CO 2 for capture. In combination with flue gas recirculation, higher levels of CO 2 are expected but increased H 2 O and SO 2 levels also may occur. In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures up to advanced ultrasupercritical conditions. Using 500h exposures, no consistent negative effect was found for switching to the oxy-firing environment with the same synthetic ash. For model Fe-Cr alloys, 30%Cr was needed to form a thin protective reaction product across this temperature range. Among the commercial stainless steels, 310-type stainless steel showed low reaction rates with the maximum attack at 650°C. At higher temperatures, the depth of attack on Fe-base type 310 stainless steel was less than for Ni-base alloy 740. Initially, this difference was attributed to the Al and Ti additions in alloy 740. However, cast and hot rolled model Ni-18Cr and -22Cr alloys with various Al and Ti additions showed decreased metal loss with increasing Al and Ti additions in the oxy-firing environment at 700° and 800°C. As expected, metal loss was very sensitive to Cr content. A second set of model alloys also examined the effect of Co and Mo.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 255-267, August 31–September 3, 2010,
... and potassium. In addition the ash formed from the coal combustion and carbon resulting from incomplete combustion can also have a significant influence on the rates of corrosion. The corrosion mechanisms can be split into two distinct zones: Furnace wall corrosion where the gas temperature in the furnace can...
Abstract
View Papertitled, Modeling Fireside <span class="search-highlight">Corrosion</span> of Heat Exchanger Materials in Advanced Energy Systems
View
PDF
for content titled, Modeling Fireside <span class="search-highlight">Corrosion</span> of Heat Exchanger Materials in Advanced Energy Systems
This paper outlines a comprehensive UK-based research project (2007-2010) focused on developing fireside corrosion models for heat exchangers in ultra-supercritical plants. The study evaluates both conventional materials like T22 and advanced materials such as Super 304H, examining their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube materials operating under demanding conditions. The project addresses some limitations of existing models for these new service conditions and provides a brief review of the fuels and test environments used in the program. Although modeling is still limited, preliminary results have been presented, focusing on predicting fireside corrosion rates for furnace walls, superheaters, and reheaters under various service environments. These environments include those created by oxyfuel operation, coal-biomass co-firing, and more traditional coal firing.
Proceedings Papers
A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... and power plants, the fraction of Cr of the alloy about 25% is enough to achieve protection against coal ash/flue gas corrosion, although the coal ash corrosion rate probably varies with temperature and corrosive environment. The critical content of Cr should be required in order to guarantee the formation...
Abstract
View Papertitled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 96-109, August 31–September 3, 2010,
.... Steam oxidation and coal ash corrosion resistance are important criteria for USC service as well. Steam oxidation is not expected to be a limiting factor for alloy 740; see data in Figure 4.6 Fireside or coal ash corrosion is much more complex as coal ash chemistry exerts a strong influence upon...
Abstract
View Papertitled, Optimization of Inconel Alloy 740 for Advanced Ultra Supercritical Boilers
View
PDF
for content titled, Optimization of Inconel Alloy 740 for Advanced Ultra Supercritical Boilers
Inconel alloy 740 was initially developed to enable the design of coal-fired boilers capable of operating at 700°C steam temperature and high pressure. The alloy successfully met the European program's targets, including 100,000-hour rupture life at 750°C and 100 MPa stress, and less than 2 mm metal loss in 200,000 hours of superheater service. However, thick section fabrication revealed weldability challenges, specifically grain boundary microfissuring in the heat affected zone (HAZ) of the base metal. This paper describes the development of a modified variant with significantly improved resistance to HAZ microfissuring and enhanced thermal stability, while maintaining desirable properties. The formulation process is detailed, and properties of materials produced within the new composition range are presented. Additionally, the microstructural stability of the original and modified alloy compositions is compared, demonstrating the advancements achieved in this critical material for next-generation power plants.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 220-230, October 3–5, 2007,
... resistance to coal ash corrosion in laboratory tests designed to simulate boiler conditions as well. This paper briefly introduces the important results of structure stability of the alloy during long-term aging at elevated temperatures. On the basis of thermodynamic calculation, the methods for structure...
Abstract
View Papertitled, A New Improvement of Inconel Alloy 740 for USC Power Plants
View
PDF
for content titled, A New Improvement of Inconel Alloy 740 for USC Power Plants
A new nickel-base superalloy, Inconel alloy 740, is being developed for ultra-supercritical (USC) boiler applications operating above 750°C, designed to meet critical requirements for long-term high-temperature stress rupture strength (100 MPa for 10 5 hours) and corrosion resistance (2 mm/2 × 10 5 hours). Experimental investigations revealed key structural changes at elevated temperatures, including γ coarsening, γ' to η transformation, and G phase formation. To enhance strengthening effects and structural stability, researchers conducted a systematic optimization process based on thermodynamic calculations, implementing small adjustments to several alloying elements and designing modified alloy compositions. Comprehensive testing examined the long-term structural stability of these modifications, with investigations conducted up to 5,000 hours at 750 and 800°C, and 1,000 hours at 850°C. Mechanical property and oxidation resistance tests compared the modified alloys with the original Inconel alloy 740, yielding preliminary results that demonstrate minimal modifications can improve stress rupture strength while maintaining corrosion resistance. Microstructural examinations further confirmed the enhanced thermal stability of the modified alloy, positioning Inconel alloy 740 as a promising candidate for USC boiler applications at 750°C or higher temperatures.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 762-772, October 25–28, 2004,
... Abstract High-temperature corrosion occurs in different sections of energy production plants due to a number of factors: ash deposition, coal impurities, thermal gradients, and low NO x conditions, among others. High-temperature electrochemical corrosion rate (ECR) probes are rarely used...
Abstract
View Papertitled, Electrochemical <span class="search-highlight">Corrosion</span> Rate Probes for High-Temperature Energy Applications
View
PDF
for content titled, Electrochemical <span class="search-highlight">Corrosion</span> Rate Probes for High-Temperature Energy Applications
High-temperature corrosion occurs in different sections of energy production plants due to a number of factors: ash deposition, coal impurities, thermal gradients, and low NO x conditions, among others. High-temperature electrochemical corrosion rate (ECR) probes are rarely used at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the effects of probe composition, ash composition, environment chemistry, and measurement technique on the accuracy, response, and longevity of electrochemical corrosion rate probes. The primary goal is to understand when ECR probes accurately measure corrosion rates and when they are simply qualitative indicators of changes in the corrosion processes. Research to date has shown that ECR probe corrosion rates and corrosion rates from mass loss coupons agree within a factor of 2. This good agreement was found to depend on the composition of the sensors, with the best results coming from more highly alloyed materials such as 316L stainless steel and poorer results from carbon steel sensors. Factors being considered to help explain the good or poor agreement between mass loss and ECR probe corrosion rates are: values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits.
1