Skip Nav Destination
Close Modal
Search Results for
cleavage fractures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13
Search Results for cleavage fractures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 821-829, February 25–28, 2025,
... concentration in an alloy, the more severe the hydrogen embrittlement. It was also found that solid solution alloys have less severe hydrogen embrittlement than precipitation alloys of the same Ni equivalent concentration. In solid solution alloys, hydrogen embrittlement led to cleavage type fracture, which...
Abstract
View Papertitled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
View
PDF
for content titled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
Hydrogen as a clean fuel is increasingly being used to propel gas turbines and to power combustion engines. Metallic materials including Ni-based alloys are commonly used in conventional gas turbines and combustion engines. However, hydrogen may cause embrittlement in these materials, depending on their chemical composition. In this work, the hydrogen embrittlement behavior of Ni-based alloys containing up to 50 wt.% Fe has been investigated using slow strain rate tensile testing, under cathodic hydrogen charging at room temperature. It was found that the larger the Ni equivalent concentration in an alloy, the more severe the hydrogen embrittlement. It was also found that solid solution alloys have less severe hydrogen embrittlement than precipitation alloys of the same Ni equivalent concentration. In solid solution alloys, hydrogen embrittlement led to cleavage type fracture, which is in line with literature where hydrogen enhanced planar deformation. In precipitation alloys, hydrogen embrittlement resulted in a typical intergranular fracture mode.
Proceedings Papers
The Fracture Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 930-949, October 25–28, 2004,
... surfaces near the fusion line displayed cleavage-like features, while the region 1 mm away exhibited features associated with higher crack growth resistance. cleavage fractures fatigue crack growth rates fatigue crack growth test fatigue crack propagation fatigue life ferritic stainless steel...
Abstract
View Papertitled, The <span class="search-highlight">Fracture</span> Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
View
PDF
for content titled, The <span class="search-highlight">Fracture</span> Behaviors of the Welded Joints in P92, P122 and P23 Pipe Steels for Fossil Power Plants
This paper reports on a study that investigated how low cycle fatigue (LCF) and fatigue crack propagation (FCG) properties of P92, P122, and P23 steels vary between 600°C and 700°C depending on the location relative to a cross weld. Microstructure analysis was also performed on fractured specimens. Due to its higher yield strength, P122 exhibited the best continuous LCF life. However, creep-fatigue interaction (CFI) in the weld heat-affected zone (HAZ) of P122 and P23 steels significantly reduced their lifespans compared to continuous LCF tests. This reduction is attributed to the effect of weld thermal cycles on fine precipitates. FCG tests revealed that the base metal consistently outperformed the HAZ in all tested steels and temperatures. P92 and P122 showed similar FCG rates except for P92's behavior at 600°C, which resembled P23. In both steels, the HAZ exhibited faster FCG rates at 600°C and 700°C compared to the base metal, particularly at lower stress intensity factor ranges (ΔK). Within the HAZ, the region 1 mm from the fusion line displayed the slowest FCG rates, followed by the base metal, while the fusion line and the region 2 mm from it showed the fastest. Fracture surfaces near the fusion line displayed cleavage-like features, while the region 1 mm away exhibited features associated with higher crack growth resistance.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... 0h; (b) aging 1000h; (c)aging 2000h; (d) aging 3000h The fracture morphology of base metal and weld specimen after 1000h aging was analyzed in detail, as shown in Fig.9. In the base metal sample, the main form of fracture is cleavage fracture. In the middle region of the fracture, a large number...
Abstract
View Papertitled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
View
PDF
for content titled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
... morphology of the impact fracture after aging for 500h, 1000h and 3000h is shown in Figs. 3a, c and e, respectively. In comparison with the locations of the crack initiation in these typical cleavage fractures, it is apparent to indicate that the distance from the crack initiation to the Charpy V- notch...
Abstract
View Papertitled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
View
PDF
for content titled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, February 25–28, 2025,
... cleavage fracture, which is a problem to be considered as a cause of grain boundary segregation. 552 Finally, precipitation phase in grain may be concerned. This is due to the precipitation of - carbide [Fe2.4C], M2C [Mo-rich], M3C, M7C3 and sigma phase in the grain during tempering, which causes material...
Abstract
View Papertitled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
View
PDF
for content titled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 405-415, October 21–24, 2019,
... along columnar crystals, while the whole fracture surface of the crack extension zone at 730 was dominated by flat facet, which was consistent with the lower fracture toughness of the weld metal at 730 . The fracture surface of the base metal at 650 appeared to be cleavage fracture with a small...
Abstract
View Papertitled, Effect of Temperature on <span class="search-highlight">Fracture</span> Toughness of Inconel 617B Superalloy Welded Joint
View
PDF
for content titled, Effect of Temperature on <span class="search-highlight">Fracture</span> Toughness of Inconel 617B Superalloy Welded Joint
In the present study, the Inconel 617B superalloy welded trial rotor was fabricated by narrow gap tungsten inert gas (NG-TIG) welding and the effects of temperature on fracture toughness of its welded joint were investigated at 650 ℃ and 730 ℃. Fracture toughness (J0.2) of the base metal was much higher than that of the weld metal at the same temperature, which was attributed to its excellent macroscopical plasticity and the interactions of strain localization, misorientation, and coincidence site lattice (CSL) boundaries. For the base metal, the value of J0.2 was higher at 730 ℃ than at 650 ℃, resulting from the appreciable increase in ductility and decrease in strain localization as the temperature increased. For the weld metal, higher temperature (730 ℃) reduced strength but hardly improved plasticity, and the regions of high strain localization uniformly distributed in the weld metal, resulting in completely tearing the whole interface apart and lower fracture toughness of the weld metal.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1446-1456, October 21–24, 2019,
.... 7 (b it is considered that the failure has taken place in grain interior. On the other hand, the latter shows marked asperity fracture surface (Fig. 7 (c Besides, since cleavage fracture surface can be observed (Fig. 7 (d it seems that grain boundary failure has taken place along grain boundaries...
Abstract
View Papertitled, Microstructure Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
View
PDF
for content titled, Microstructure Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
Effects of microstructure constituents of α 2 -Ti 3 Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. Microstructure analysis have revealed that intragranular fracture along γ/γ grain boundary occurred in γ single phase alloy whereas it does not along β/γ interphase in alloys containing β phase. In addition, local strain accumulations along β/γ interphase have been confirmed. The present results, thus, confirmed the significant contribution of β phase, especially the existence of β/γ interphase to enhancement of the room-temperature ductility in multicomponent TiAl alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
... service take the form of mixed fractures of dimple and quasi-cleavage. Its fracture surface has local plastic deformation. Its fracture includes the mixing mechanism of micro-hole aggregation and cleavage. Its morphology is characterized by a large number of short and curved tear edges. Some relatively...
Abstract
View Papertitled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
View
PDF
for content titled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
... that the controlled deposition welding resulted in a significant improvement in the notch toughness of the HAZ compared with the parent steel. Fig. 9b shows a macroscopic fracture surfaces of Charpy impact test specimen. The fracture surface of weldment showed ductile fracture morphologies, whereas the cleavage...
Abstract
View Papertitled, The Improvement of Repair Welding for CrMoV Turbine Casings
View
PDF
for content titled, The Improvement of Repair Welding for CrMoV Turbine Casings
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
... intergranular nature of the creep fracture. The mechanical strength of the microstructure is influenced by the yield strength (obstacles to dislocation movement) and by cleavage strength (resistance to crack propagation) [2]. When the PAG size is very large, the PAG boundaries offer greater continuity for crack...
Abstract
View Papertitled, Influence of Microstructure on the Creep Properties of Grade P22 Steel
View
PDF
for content titled, Influence of Microstructure on the Creep Properties of Grade P22 Steel
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 254-264, October 22–25, 2013,
... of failure, macroscopic fracture mode is correlated with microscopic damage mechanisms. EXPERIMENTAL Material 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy was manufactured at industrial scale through vacuum induction melting followed by consumable electrode vacuum arc remelting. Composition of product sample...
Abstract
View Papertitled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
View
PDF
for content titled, Cyclic Properties of 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb Alloy at Advanced USC Steam Temperature
Significant development is being carried out worldwide for establishing advanced ultra supercritical power plant technology which aims enhancement of plant efficiency and reduction of emissions, through increased inlet steam temperature of 750°C and pressure of 350 bar. Nickel base superalloy, 50Ni-24Cr-20Co-0.6Mo-1Al-1.6Ti-2Nb alloy, is being considered as a promising material for superheater tubes and turbine rotors operating at ultra supercritical steam conditions. Thermal fluctuations impose low cycle fatigue loading in creep regime of this material and there is limited published fatigue and creep-fatigue characteristics data available. The scope of the present study includes behavior of the alloy under cyclic loading at operating temperature. Strain controlled low cycle fatigue tests, carried out within the strain range of 0.2%-1%, indicate substantial hardening at all temperatures. It becomes more evident with increasing strain amplitude which is attributed to the cumulative effects of increased dislocation density and immobilization of dislocation by γ′ precipitates. Deformation mechanism which influences fatigue life at 750°C as a function of strain rate is identified. Hold times up to 500 seconds are introduced at 750°C to evaluate the effect of creep fatigue interaction on fatigue crack growth, considered as one of the primary damage mode. The macroscopic performance is correlated with microscopic deformation characteristics.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 933-944, February 25–28, 2025,
... this failure occurred beyond the susceptibility threshold, fracture surface analysis suggests a hydrogen related mechanism, making the TBW675 condition susceptible to HIC after very long exposure to high diffusible hydrogen levels. The fracture surface combines IG-like morphology with quasi-cleavage (QC...
Abstract
View Papertitled, Effect of Reheated CGHAZ Microstructure on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
View
PDF
for content titled, Effect of Reheated CGHAZ Microstructure on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
According to ASME Case N-888-3, Similar and Dissimilar Metal Welding Using Ambient Temperature SMAW or Machine GTAW Temper Bead Technique, a 48 hr waiting period before conducting the final nondestructive examination (NDE) is required when ferritic filler weld metal is used. The purpose of the 48 hr hold is to confirm the absence of hydrogen-induced cracking in the temper bead heat-affected zone. In previous research, the effect of post-weld heat treatment (PWHT) and temper bead welding (TBW) on the hydrogen-induced cracking (HIC) susceptibility in the coarse-grained heat-affected zone (CGHAZ) in welds of SA-508, P-No. 3 Group 3, pressure vessel steel was investigated using the Delayed Hydrogen Cracking Test (DHCT). In that previous study, the Gleeble thermomechanical simulator was used to generate six CGHAZ microstructural conditions: as-welded (AW), PWHT, and AW with single a TBW reheat at 675, 700, 725, and 735°C. Hydrogen was introduced to the specimen through cathodic charging under in situ constant tensile stress. The HIC susceptibility for these microstructures was ranked by the DHCT at a diffusible hydrogen level significantly exceeding typical GTAW and SMAW processes. The work described in this paper investigates the susceptibility to HIC of these same CGHAZ microstructures with DHCT at variable current densities, further ranking each condition. Test results were analyzed by fracture surface examination of failed tests, and cross-section microstructural analysis under a scanning electron microscope (SEM). Future steps include evaluating critical hydrogen content levels using gas chromatography for each condition. The results from this study will be used to consider potential elimination of the NDE hold time requirement in Case N-888-3 when ferritic weld metal is used.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
... a cavity generated by the creep process from microvoid regions around second phase particles developed from the fracture process. It has not been routinely demonstrated that the PTZ will fracture intergranularly or by cleavage, for example. Transmission electron microscopy (TEM) involves targeting...
Abstract
View Papertitled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
View
PDF
for content titled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.