Skip Nav Destination
Close Modal
Search Results for
chromium sulfide
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13 Search Results for
chromium sulfide
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 420-427, October 25–28, 2004,
... Abstract The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities...
Abstract
View Paper
PDF
The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities of sulfur states in the steel. One is in atomic sulfur state as a solid solution, and the other is in sulfide state as a precipitate. However, it still remains unclear which sulfur state contributes largely to the improvement of the steam oxidation resistance of the steels. In order to elucidate the sulfur state operated more effectively in improving the oxidation resistance, the steam oxidation resistance was investigated with high chromium ferritic steels, Fe-10mass%Cr-0.08mass%C-(0~0.015)mass%S, with controlling the sulfur states in them by proper heat treatments. From a series of experiments, it was found that the sulfide state played a more important role in improving the steam oxidation resistance than the atomic sulfur state. Furthermore, this sulfur effect worked significantly in the steam oxidation test performed at the temperatures above 873K which corresponded to the temperature for the chromium sulfide to dissolve and instead for the chromium oxide to form in the steels. This result indicates that the beneficial effect of sulfur in improving the steam oxidation resistance is related closely to the sulfide stability against the oxide in the steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 135-142, October 21–24, 2019,
... is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring...
Abstract
View Paper
PDF
In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events may occur that boost the severity of corrosion: high feedstock turnover, with increasing “active” sulfur species; skin temperature rise due to the increasing insulation effect of the scale, generating an over-tempering of the material and possible degeneration into creep conditions. Thor115 is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming the superior properties of Thor115 relative to other ferritic grades. For these reasons, Thor 115 is a suitable replacement material for piping components that need an upgrade from grade T/P9 or lower, in order to reduce corrosion rate or frequency of maintenance operations.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... chromium content. A cross section of the wrought alloy 622 sample exposed for 4940 hours is shown in Figure 5. The outer sulfide scale layers 1 and 2, higher in nickel content as with the FM72M sample (see Figure 6), are much more voluminous, as evidenced by the higher mass gain of the alloy 622 sample...
Abstract
View Paper
PDF
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 337-356, October 25–28, 2004,
... gaseous corrosion testing gas-tungsten arc welding iron-aluminum-chromium alloys microsegregation nickel-based superalloys oxidizing sulfidizing waterwall boiler tubes weld overlay claddings weldability httpsdoi.org/10.31399/asm.cp.am-epri-2004p0337 Copyright © 2005 ASM International® 337 338...
Abstract
View Paper
PDF
Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several types of low NOx environments. In the present study, the susceptibility of FeAlCr weld overlay claddings to hydrogen cracking was evaluated using a gas-tungsten arc welding (GTAW) process. Microsegregation of alloying elements was determined for the FeAlCr welds and compared to a currently used Ni-based superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion resistance of the coatings. It was found that although there were slight differences in the corrosion behavior of the selected FeAlCr weld coatings, all FeAlCr based alloys exhibited superior corrosion resistance to the Ni-based superalloy during exposures up to 2000 hours.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
... penetration. Keywords: Active Sulfide-to-Oxide Mechanism, Hot Corrosion, Oxy Combustion, Coal Ash Corrosion, A-USC 863 INTRODUCTION The recent development of high-efficiency, low-emission coal-fired utility boilers has led to steam conditions of much higher temperatures and pressures.1 Examples include...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1422-1431, October 22–25, 2013,
... loss 1425 Chromium Content Dependence Figure 3 shows the relationship between the chromium content and average metal loss in 0.2%SO2. The average metal loss decreases with increasing chromium content. It was found that Cr content in the materials played an important role in relation to the average...
Abstract
View Paper
PDF
Six types of solution treated Ni-based alloy plates having a thickness of 25mm, namely Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W (45Ni-23Cr-7W) and HR35 (50Ni-30Cr-4W-Ti) for advanced-USC boilers, were subjected to corrosion testing. In addition, three types of conventional ferritic and five types of conventional austenitic stainless tubes were also tested to compare their corrosion properties. Hot corrosion tests were conducted in order to assess the effects of temperature, material composition and coal ash composition on hot corrosion. The maximum average metal loss and the maximum corrosion rate were observed under 700°C test conditions. Cr content in the materials played an important role in the corrosion rate, with higher Cr content materials tending to show lower rates. However, Ni-based alloy materials showed slightly greater corrosion rates than those of stainless steels having equivalent Cr content in the over-700°C test condition. It was considered that rich Ni in the alloys easily reacted with sulfur, thus forming corrosion products having low melting points, such that corrosion was accelerated. The concentration of Fe 2 O 3 and NiO in the synthetic coal ash was also observed to affect the corrosion rate.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
... 100 MPa (14,5 ksi). By increasing the chromium content to > 25 wt.% the oxidation and corrosion problem can be reasonably solved. However, the higher chromium contents favours microstructural stability problems after long term service depending on the alloying concept. A strength loss due...
Abstract
View Paper
PDF
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
... loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging. austenitic stainless steel coal fired boilers corrosion testing high-temperature corrosion nickel-chromium-molybdenum alloys thermal spray coating waterwall tubes weld overlays...
Abstract
View Paper
PDF
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
..., with chromium increasing moving toward the scale-metal interface. The sulfide scale on the alloy 625 sample was much more friable in appearance and less adherent than that of the alloy 622 which seems to be a reasonable explanation for the actual inservice experience where 622 outperforms 625 by a substantial...
Abstract
View Paper
PDF
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... oxide scale was thicker in the case of alloys 263 and 617; the alloy 740H samples possessed a thinner, more compact chromia scale. All alloys developed internal oxides along grain boundaries rich in Al/Ti. Chromium sulfides (verified with SEM-EDS and backscatter visualization), evident...
Abstract
View Paper
PDF
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... with other consortium partners - B&W, FW, Riley Power, OCDO, ORNL and EPRI - toward developing experience and knowhow in advanced materials. One such effort has been in the study of steamside oxidation and fireside corrosion of several different nickel alloys as well as high chromium alloys in a steam loop...
Abstract
View Paper
PDF
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 714-731, October 22–25, 2013,
... are hard particles within the plastically deforming matrix and at some critical value of strain void formation occurs. In general, it has been reported that relatively large oxide and sulfide inclusions are more effective in the initiation of voids which grow by plastic deformation than small particles...
Abstract
View Paper
PDF
As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below that originally predicted from a simple extrapolation of short term data. One of the microstructural degradation mechanisms responsible for the reduction in strength is the development of creep voids. Nucleation, growth and inter linkage of voids also result in a significant loss of creep ductility. Indeed, elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant densities of voids further complicates in-service assessment of condition and weld repair of these steels. The present paper examines background on the nucleation and development of creep voids in 9 to 12%Cr martensitic steels and discusses factors affecting brittle behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1025-1037, October 22–25, 2013,
... is a nickel-base, precipitation hardenable superalloy that offers a unique combination of high strength and creep resistance at elevated temperatures along with resistance to coal ash corrosion, oxidation, carburization and sulfidation. Alloy 740H is derivation of NIMONIC alloy 263. With its higher content...
Abstract
View Paper
PDF
The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC) boiler, which is the latest boiler design, currently under development. As with all high nickel alloys, welding of alloy 740H can be very challenging, even to an experienced welder. Weldability challenges are compounded when considering that the alloy may be used in steam headers, where critical, thick-section and stub-to-header weld joints are present. This paper is intended to describe the proper procedures developed over years of study that will allow for ASME code quality welds in alloy 740H with matching composition filler metals.