Skip Nav Destination
Close Modal
Search Results for
chemical space
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 83 Search Results for
chemical space
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 768-777, October 11–14, 2016,
... a chemical space to identify alloy combinations that are expected to be safe from deleterious phase formation. Using thermodynamic modeling software and a stepped approach to potential chemistries, the entire phase stability space over the full extent of possible mixing between substrate and weld material...
Abstract
View Paper
PDF
Due to a high degree of mixing between substrate and weld deposit, fusion welding of dissimilar metal joints functionally produce new, uncharacterized alloys. In the power generation industry, such mixing during the application of cobalt-based hardfacing has led to a disconcerting number of failures characterized by the hard overlay welds disbonding. Investigations into this failure mechanism point to the unknown alloy beneath the surface of the hardfacing layer transforming, hardening, and becoming brittle during service. This research describes a methodology for exploring a chemical space to identify alloy combinations that are expected to be safe from deleterious phase formation. Using thermodynamic modeling software and a stepped approach to potential chemistries, the entire phase stability space over the full extent of possible mixing between substrate and weld material can be studied. In this way diffusion effects – long term stability – can also be accounted for even in the case where mixing during application is controlled to a low level. Validation of predictions specific to the hardfacing system in the form of aged weld coupons is also included in this paper. Though the application of this methodology to the hardfacing problem is the focus of this paper, the method could be used in other weld- or diffusion- combinations that are expected to operate in a high temperature regime.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1-12, October 15–18, 2024,
... that minimize defects. Thus, a large process parameter space was investigated, especially given that the utilized deposition technology is relatively novel for this application. A holistic, multi-modal approach to quantify defect types, densities, and morphologies, towards understanding processing-structure...
Abstract
View Paper
PDF
Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy deposition can create large components but often requires post-processing treatments, such as hot isostatic pressing (HIP), to address porosity. This study explores a low heat-input, high deposition rate GMAW process to achieve fully dense Haynes 282 without HIP. Twenty-one blocks were deposited, varying travel and wire feed speeds. Initial analysis (visual inspection, microstructural examination, and CT) revealed the impact of build parameters on internal porosity and defects. Scanning electron microscopy provided insights into structural heterogeneity and microstructural properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
...-2019p1109 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org CHARACTERISATION OF SUITABLE FILLERS FOR BUTT WELD OF CREEP AGED X20 AND VIRGIN P91 PIPES Thendo Mphaphathi1,2, Nthabiseng Maledi1 School of Chemical and Metallurgical Engineering, University of the Witwatersrand...
Abstract
View Paper
PDF
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
...’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample...
Abstract
View Paper
PDF
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 398-404, October 21–24, 2019,
... Ternary Ni-38Cr-3.8Al (mass%) alloy Table 1 : Chemical composition of Ni-38Cr-3.8Al in mass%. was prepared in 50 kg ingot by an induction melting technique in vacuum. Ni Cr Al C B The chemical composition of the alloy Bal. 38.0 3.8 0.01 0.003 was showed in Table 1. The ingot was homogenized at 1403 K...
Abstract
View Paper
PDF
Ni-38Cr-3.8Al has high hardness and high corrosion resistance with good hot workability, and therefore, it has been applied on various applications. However, in order to expand further application, it is important to understand the high temperature properties. Then, this study focused on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced by the temperature. Although the high temperature properties, except for creep property, of Ni-38Cr-3.8Al were superior to those of conventional Ni-based superalloys, the properties were dramatically degraded beyond 973 K. This is because the lamellar structure begins to collapse around 973 K due to the thermal stability of the lamellar structure. The hot corrosion resistance of Ni-38Cr-3.8Al was superior to that of conventional Ni-based superalloys, however, the advantage disappeared around 1073 K. These results indicate that Ni-38Cr-3.8Al is capable as a heat resistant material which is required the hot corrosion resistance rather than a heat resistant material with high strength at high temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
... the process duration and avoided the oxidation of the sheet specimens during the nitriding due to the impurity of the atmosphere, oxygen. Chemical composition and manufacturing process of the specimen Table.1 shows chemical compositions of the parent steels for nitride specimens. Basic composition...
Abstract
View Paper
PDF
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 693-704, August 31–September 3, 2010,
...) were imported abroad. Creep specimens were machined from heat treated pipe, which was normalized at 1050 for 120 minutes and then tempered at 780 for 160 minutes; 10Cr9MoW2VNbBN pipe ( 610×102mm) were produced in China and heat treated as quenched and tempered. The chemical 693 compositions are given...
Abstract
View Paper
PDF
In this paper, the microstructural evolution of P92 steel were studied in the viewpoint of degradation mechanism based on the creep rupture experiment results obtained at elevated temperature by means of macroscopic, metallographic, electronic microscope, energy spectrum, XRD and TEM examination. The results show that the decrease of mechanical properties of P92 steel is mainly due to the change of microstructure and the transformation of carbides, and there is definite relationship between microstructure evolution, mechanical properties and life loss of P92 steel. The results are beneficial to the further study of mechanism of high temperature creep rupture strength and microstructural evolution of heat-resistant steel. It also has important instructive significance to quantitative identification of scientific selection of materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, October 15–18, 2024,
... microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α...
Abstract
View Paper
PDF
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 654-666, August 31–September 3, 2010,
... triggers the static recovery. In general M23C6 particles in Gr. 91 steel are thermally more stable than those in Gr. 122 type steels, and the breakdown of creep strength is not evident in the steel up to 105 h at 600 oC. However, coarsening of M23C6 particles spacing and subgrain width can start...
Abstract
View Paper
PDF
A study of Grade 91 steel's creep rupture behavior at 600°C (up to 90,000 hours) and 650°C (up to 23,000 hours) reveals that static recovery of tempered martensite lath structures leads to decreased stress exponent and breakdown of creep strength. While M 23 C 6 and MX particles initially stabilize lath structures by hindering sub-boundary migration, the progressive aggregation of M 23 C 6 particles reduces their pinning force, triggering static recovery. Although Grade 91 steel shows better M 23 C 6 thermal stability compared to Grade 122 type steels (9-12%Cr-2W-0.4Mo-1Cu-VNb), coarsening of M 23 C 6 particles and subgrain width is expected to occur slightly beyond 100,000 hours at 600°C, potentially leading to creep strength breakdown.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 924-932, October 15–18, 2024,
... Abstract Solidification cracking (SC) is a defect that occurs in the weld metal at the end of the solidification. It is associated with the presence of mechanical and thermal stresses, besides a susceptible chemical composition. Materials with a high solidification temperature range (STR...
Abstract
View Paper
PDF
Solidification cracking (SC) is a defect that occurs in the weld metal at the end of the solidification. It is associated with the presence of mechanical and thermal stresses, besides a susceptible chemical composition. Materials with a high solidification temperature range (STR) are more prone to the occurrence of these defects due to the formation of eutectic liquids wetting along the grain boundaries. The liquid film collapses once the structure shrinks and stresses act during the solidification. Thus, predicting the occurrence of SC before the welding process is important to address the problem and avoid the failure of welded components. The nuclear power industry has several applications with dissimilar welding and SC-susceptible materials, such as austenitic stainless steels, and Ni-based alloys. Compositional optimization stands out as a viable approach to effectively mitigate SC in austenitic alloys. The integration of computational modeling into welding has significantly revolutionized the field of materials science, enabling the rapid and cost-effective development of innovative alloys. In this work, a SC resistance evaluation is used to sort welding materials based on a computational fluid dynamic (CFC) model and the alloy's chemical composition. An index named Flow Resistance Index (FRI) is used to compare different base materials and filler metals as a function of dilution. This calculation provides insights into the susceptibility to SC in dissimilar welding, particularly within a defined dilution range for various alloys. To assess the effectiveness of this approach, the relative susceptibility of the materials was compared to well-established experimental data carried out using weldability tests (Transvarestraint and cast pin tear test). The FRI calculation was programmed in Python language and was able to rank different materials and indicate the most susceptible alloy combination based on the dilution and chemical composition.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
... (Oxford Instruments, Oxfordshire, UK). The OIM images were subjected to a clean-up procedure, setting the minimal confidence index to 0.1. Surfaces of the specimens for optical microscope observation were mechanically polished and then chemically etched in a solution of 2%HNO3 + 1%HF +97%H2O. TEM foils...
Abstract
View Paper
PDF
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
... chemical composition but also manufacturing processes. In particular, the control of grain size is a major factor in determining material properties. In Alloy 718, fine grains are necessary for applications requiring a high fatigue strength. One method for achieving fine grains in manufacturing large disks...
Abstract
View Paper
PDF
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 506-512, October 21–24, 2019,
... of the nodule and hot ductility. Therefore, in this study, influence of morphology on hot workability of the alloy U520 was examined with a focus on the presence of nodule. EXPERIMENT The chemical composition of the investigated Alloy U520 is shown in Table 1. The solvus temperature measured by DTA analysis...
Abstract
View Paper
PDF
The relationship between the hot workability and the precipitation morphology of γ′ phase in the Alloy U520 was examined with a focus on the presence of γ′-nodule. To change the morphology of γ’ phase, forged bars of the Alloy U520 were solution treated followed by cooling process with the cooling rates of 5~100 K/h. After the heat treatment, both γ’ phases of intragranular particle and nodule along grain boundaries were observed, and the both sizes increased by slowing down the cooling rate. That is, the area fraction of γ’-nodule increased from about 0.1 % in the sample cooled at 100 K/h to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop in ductility. EBSD analysis revealed that dynamic recrystallization (DRX) was often occurred in grain interior but suppressed at γ′-nodule area, indicating that presence of γ′-nodule had a negative influence on hot workability at subsolvus temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced...
Abstract
View Paper
PDF
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
.... The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size...
Abstract
View Paper
PDF
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
... an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation...
Abstract
View Paper
PDF
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
... between the various crack mechanisms [11], and it is possible that all may contribute to some degree. 881 Table 1: Composition space searched by the ABD software in the present alloy design work. The balance element is nickel. Element / wt% Al Co Cr Mo Nb Ta Ti W Max. 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 Min...
Abstract
View Paper
PDF
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 949-961, August 31–September 3, 2010,
... evolution during long term ageing was determined. The detailed microstructural data (e.g. precipitate size, inter-particle spacing and volume fraction) was used for validation of a Monte Carlo microstructure evolution model, which has been developed earlier. [2] Results Metallography and image analysis...
Abstract
View Paper
PDF
This study investigates the microstructure evolution of Type 316H stainless steel, focusing on the identification of major precipitates using advanced characterization techniques. The precipitation sequence at service temperatures of 650°C is identified as M 23 C 6 , followed by Laves phase, grain boundary (GB) sigma phase, and inter-granular sigma phase. At 750°C, the sequence progresses from M 23 C 6 to Laves phase, GB sigma phase, chi phase, and intra-granular sigma phase, with the chi phase forming intra- and inter-granularly after 5,000 hours of aging. During the formation of the sigma and chi phases, carbides and Laves phases dissolve. A Monte Carlo model has been developed to predict detailed microstructure evolution during long-term aging, calibrated using quantitative precipitate evolution measurements of Type 316H. After validation, the model aligns well with experimental data, offering a method to predict the microstructure of Type 316H and potentially other austenitic stainless steels over the lifespan of power plants.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1114-1125, October 15–18, 2024,
... operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination...
Abstract
View Paper
PDF
High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up welding, usually in several layers. The valve materials are generally heat-resistant steels such as 10CrMo9-10 (1.7380), X20CrMoV1 (1.4922), or Grade 91 / Grade 92 (1.4903 / 1.4901). In recent years, cracks or delaminations have frequently occurred within the hardfaced layer. The influence of cycling operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination behavior and to understand the involved damage mechanisms. Thermostatic and cyclic exposure tests have shown that cracking is favored by the formation of brittle phases due to iron dilution from the substrate material during the manufacturing process. Recommendations for the welding process of hardfaced sealing surfaces of fittings were derived from the investigation results.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, October 15–18, 2024,
... analysis results on the diagram along with bounding specification ranges, the presentation highlights relative differences between the test programs. Figure 7 also demonstrates the breadth of chemical composition space relevant to DED 316H stainless steels and austenite/ferrite stability, both of which...
Abstract
View Paper
PDF
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
1