Skip Nav Destination
Close Modal
Search Results for
chemical composition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 467
Search Results for chemical composition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
Effects of Chemical Composition and Heat Treatment on Creep Properties of ASME Grade 91 Type Steel
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1216-1227, February 25–28, 2025,
... Abstract The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding...
Abstract
View Papertitled, Effects of <span class="search-highlight">Chemical</span> <span class="search-highlight">Composition</span> and Heat Treatment on Creep Properties of ASME Grade 91 Type Steel
View
PDF
for content titled, Effects of <span class="search-highlight">Chemical</span> <span class="search-highlight">Composition</span> and Heat Treatment on Creep Properties of ASME Grade 91 Type Steel
The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding chemical composition, only the Al, Cr, and Ni contents were systematically varied while keeping the contents of the other elements and heat treatment conditions constant. Regarding heat treatment, the normalizing and tempering temperatures were varied while keeping the contents of chemical components constant. The creep tests of materials were performed for approximately up to 50,000 h at 650°C. The creep strength of Grade 91 type steel decreased with increasing Al content under the test conditions of short-term to long-term range. On the other hand, the effect of Cr content on the creep life of Grade 91 type steel depended on the stress or time range, and the creep strength of the steel decreased at high Cr contents under test conditions of only the longterm range. No effect of Ni content on the creep life of the materials was observed in the test data obtained in this study. As creep tests are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment, the creep life of the materials tended to increase with increasing normalizing temperature or decreasing tempering temperature. The results obtained in this work indicate that within the scope of the material standards for Grade 91 type steel, the effect of chemical composition on creep life is greater than that of heat treatment.
Proceedings Papers
Computational Approach To Predict Solidification Cracking Susceptibility in Welding Filler Metals
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 924-932, February 25–28, 2025,
... Abstract Solidification cracking (SC) is a defect that occurs in the weld metal at the end of the solidification. It is associated with the presence of mechanical and thermal stresses, besides a susceptible chemical composition. Materials with a high solidification temperature range (STR...
Abstract
View Papertitled, Computational Approach To Predict Solidification Cracking Susceptibility in Welding Filler Metals
View
PDF
for content titled, Computational Approach To Predict Solidification Cracking Susceptibility in Welding Filler Metals
Solidification cracking (SC) is a defect that occurs in the weld metal at the end of the solidification. It is associated with the presence of mechanical and thermal stresses, besides a susceptible chemical composition. Materials with a high solidification temperature range (STR) are more prone to the occurrence of these defects due to the formation of eutectic liquids wetting along the grain boundaries. The liquid film collapses once the structure shrinks and stresses act during the solidification. Thus, predicting the occurrence of SC before the welding process is important to address the problem and avoid the failure of welded components. The nuclear power industry has several applications with dissimilar welding and SC-susceptible materials, such as austenitic stainless steels, and Ni-based alloys. Compositional optimization stands out as a viable approach to effectively mitigate SC in austenitic alloys. The integration of computational modeling into welding has significantly revolutionized the field of materials science, enabling the rapid and cost-effective development of innovative alloys. In this work, a SC resistance evaluation is used to sort welding materials based on a computational fluid dynamic (CFC) model and the alloy's chemical composition. An index named Flow Resistance Index (FRI) is used to compare different base materials and filler metals as a function of dilution. This calculation provides insights into the susceptibility to SC in dissimilar welding, particularly within a defined dilution range for various alloys. To assess the effectiveness of this approach, the relative susceptibility of the materials was compared to well-established experimental data carried out using weldability tests (Transvarestraint and cast pin tear test). The FRI calculation was programmed in Python language and was able to rank different materials and indicate the most susceptible alloy combination based on the dilution and chemical composition.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
... the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B...
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 440-445, October 11–14, 2016,
... low contents of the above mentioned residual elements, starting from the furnaces charges, up to the chemical composition measuring equipment used in the steel shop laboratories. chemical composition creep ductility ferritic stainless steel heat treatment impurity content residual elements...
Abstract
View Papertitled, Steelmaking Challenges to Achieve Grade 91 with Ultra-Low Impurity Content
View
PDF
for content titled, Steelmaking Challenges to Achieve Grade 91 with Ultra-Low Impurity Content
Grade 91 steel has achieved broad acceptance within the modern boiler industry to fabricate a variety of critical pressure components including tubing, piping and headers, particularly in Ultra Super Critical (USC), Advanced Ultra Super Critical (A-USC) and Combined Cycle Power Plants (CCPP). The applications for which this material is used enforce severe requirements on strength, corrosion, creep properties and thermal stability during service. The properties of Creep Strength Enhanced Ferritic steels (CSEF) such as Grade 91 are critically dependent on manufacturing factors like steelmaking, heat treatments and welding: poor control of these parameters can severely compromise material properties. In scientific literature, several studies correlate low creep ductility to high content of trace elements such As, Sn, Sb, Pb, Cu, P and S. Since the current reference Codes, namely ASTM/ASME, don’t require particular restrictions for these elements, Electric Power Research Institute (EPRI) has issued guidelines for grade 91 which enforce a significant reduction of impurities and trace elements. This paper discusses steelmaking operating challenges to produce Grade 91 steel with very low contents of the above mentioned residual elements, starting from the furnaces charges, up to the chemical composition measuring equipment used in the steel shop laboratories.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals...
Abstract
View Papertitled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
View
PDF
for content titled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1116-1126, October 22–25, 2013,
... Abstract Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J...
Abstract
View Papertitled, Effect of Copper Addition on the Toughness of New Z-Phase Strengthened 12% Chromium Steels
View
PDF
for content titled, Effect of Copper Addition on the Toughness of New Z-Phase Strengthened 12% Chromium Steels
Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J, for the original and the Z-Cu steel, respectively. In the original steel that contains no Cu, much more Laves-phase (Fe 2 (W,Mo)) precipitates had formed along the prior austenite grain boundaries than in the steel with Cu addition. This is believed to be the reason for the difference in impact strength. Furthermore, the Cu addition also influenced the morphology of Laves-phase precipitates; fine rod-shaped instead of coarse equiaxed Laves-phase particles were observed in Z-Cu steel in comparison to the original steel. No partitioning of Cu into the Laves-phase particles was detected by using atom probe tomography (APT). The main function of Cu seems to be the formation of Cu precipitates that act as nucleation site for Laves-phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1262-1269, October 21–24, 2019,
..., including homogeneity of chemical composition, ultrasonic tests, mechanical properties, and long-term creep behaviors, and microstructure, are presented and discussed. chemical composition coal-fired power plants forging martensitic steel mechanical properties microstructure steam turbines...
Abstract
View Papertitled, The Development of the Middle Scale Prototype for the Rotor Used in the 630 °C Steam Turbine
View
PDF
for content titled, The Development of the Middle Scale Prototype for the Rotor Used in the 630 °C Steam Turbine
A 10%Cr martensitic steel for rotor applications, COST FB2, was used in 620°C steam turbines for about four years in China. In order to increase the unit efficiency to 50% of the coal-fired power plant, an advanced 630°C steam turbine developed by DongFang Turbine Co., Ltd will be put into operation in 2021. A three-ton middle-scale prototype turbine rotor forging (3387FC1) was developed and evaluated through the collaborative work of DongFang Turbine and the Japan Steel Works (JSW) using JMATR, a high-performance heat-resistant steel developed by JSW. Test results for the prototype rotor, including homogeneity of chemical composition, ultrasonic tests, mechanical properties, and long-term creep behaviors, and microstructure, are presented and discussed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical...
Abstract
View Papertitled, Nickel Alloys for High Efficiency Fossil Power Plants
View
PDF
for content titled, Nickel Alloys for High Efficiency Fossil Power Plants
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 436-447, October 22–25, 2013,
... Abstract A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were...
Abstract
View Papertitled, Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
View
PDF
for content titled, Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were determined from the mechanical properties and microstructure. We manufactured an actual-scale rotor model made of TOS1X-2. A 31 ton ingot was manufactured, followed by forging of the model rotor with a diameter of 1100 mm and length of 2400 mm without any defects. Metallurgical and mechanical analyses of the model rotor were carried out. All metallurgical and mechanical features of the TOS1X-2 rotor model satisfied the requirements for not only 700°C-class but also over 700°C-class A-USC turbine rotor.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 424-433, October 3–5, 2007,
... Abstract To develop 10-ton class forgings with adequate long-term strength and without segregation defects for A-USC steam turbine rotors, researchers modified the chemical composition of Alloy 706 to improve its microstructure stability and segregation properties. The modified Alloy, named...
Abstract
View Papertitled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large Forgings
View
PDF
for content titled, Mechanical Properties and Manufacturability of Ni-Fe Base Superalloy (FENIX-700) for A-USC Steam Turbine Rotor Large Forgings
To develop 10-ton class forgings with adequate long-term strength and without segregation defects for A-USC steam turbine rotors, researchers modified the chemical composition of Alloy 706 to improve its microstructure stability and segregation properties. The modified Alloy, named FENIX-700, is a γ' phase strengthened alloy without a γ" phase, and its microstructure stability is superior to Alloy 706 at 700°C, as demonstrated by short-term aging tests and phase stability calculations using the CALPHAD method. A trial disk 1-ton class forging of FENIX-700 was manufactured from a double-melted ingot, with tensile and creep strength of the forging equivalent to that of 10-kg class forgings, indicating a successful trial. Long-duration creep tests were performed using 10-kg class forgings, revealing an approximate 105-hour creep strength at 700°C higher than 100 MPa. Manufacturability tests showed that FENIX-700 performs better than Alloy 706, as evidenced by segregation tests using a horizontal directional solidification furnace and hot workability tests. Microstructure observation and tensile tests on 10,000-hour aged specimens (at temperatures of 650, 700, and 750°C) revealed degradation of tensile strength and yield stress due to coarsening of the γ' phase, but also showed enhanced ductility through aging. The microstructure stability of FENIX-700 at 700°C was confirmed as excellent through microstructure observation of the 10,000-hour aged sample and supporting thermodynamic considerations.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 703-712, October 25–28, 2004,
... Abstract Numerous factors, including actual chemical composition, heat treatment, microstructure, dimensions, and service conditions, determine the lifetime of creep-exposed components. This creates a wide gap between the real condition of a given steel pipe and its project specification...
Abstract
View Papertitled, Life Extension of Main Steam Line
View
PDF
for content titled, Life Extension of Main Steam Line
Numerous factors, including actual chemical composition, heat treatment, microstructure, dimensions, and service conditions, determine the lifetime of creep-exposed components. This creates a wide gap between the real condition of a given steel pipe and its project specification. For a 141MW unit main steam line, the remaining life calculated according to the German Boiler Code TRD 508 was found to be almost exhausted. It was recommended to remove a pipe sample with a circumference weld for laboratory examination. Stress rupture tests were performed on three types of specimens: tangential, longitudinal, and longitudinal with a heat-affected zone in the middle of the gauge length using the isostress testing method. Metallographic examination of the broken specimens was conducted. Linear extrapolation of the rupture times to the service temperature yielded a residual service life of more than 100,000 hours.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 788-802, October 25–28, 2004,
... loss and chemical composition of the consumables on the weld performance was studied. Short-term tensile and long-term creep tests on cross weld specimens were carried out in order to evaluate strength. The results obtained so far show that the properties of the welded joints are rather optimistic...
Abstract
View Papertitled, Applicability of Ni-Based Welding Consumables for Boiler Tubes and Pipings in the Temperature Range up to 720°C
View
PDF
for content titled, Applicability of Ni-Based Welding Consumables for Boiler Tubes and Pipings in the Temperature Range up to 720°C
Investigations on welded joints made from a modified parent material and welding consumables are described. Tubes and pipes with typical dimensions have been welded using different welding processes and consumables (GTAW, SAW, SMAW, modified filler metals). The influence of melting loss and chemical composition of the consumables on the weld performance was studied. Short-term tensile and long-term creep tests on cross weld specimens were carried out in order to evaluate strength. The results obtained so far show that the properties of the welded joints are rather optimistic, it could be assumed that the modified Alloy 617 and the welding consumables used will meet the requirements for use in a plant operated at ultra critical steam conditions with live steam temperatures up to 720°C and pressure up to 300 bar. This allows for first practical applications in test loops of plants. These applications including the Welding Procedure Qualifications are described.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 256-273, October 25–28, 2004,
... of the early methodology employed to arrive at the current chemical composition. Brief mention is made of certain current and future alloy characterization efforts and potential environmental benefits to be expected should the boiler technology utilizing INCONEL alloy 740 be adopted. chemical composition...
Abstract
View Papertitled, The Development of Inconel Alloy 740 for use as Superheater Tubing in Coal Fired Ultra Supercritical Boilers
View
PDF
for content titled, The Development of Inconel Alloy 740 for use as Superheater Tubing in Coal Fired Ultra Supercritical Boilers
Utilities worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. Part of the solution is achieved by increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction. In this paper, a new nickel-base tube alloy, INCONEL alloy 740, meeting this challenge is characterized with emphasis on mechanical properties, coal ash and steam corrosion resistance as well as weldability. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology employed to arrive at the current chemical composition. Brief mention is made of certain current and future alloy characterization efforts and potential environmental benefits to be expected should the boiler technology utilizing INCONEL alloy 740 be adopted.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
... Abstract Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature...
Abstract
View Papertitled, Grain Boundary Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
View
PDF
for content titled, Grain Boundary Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, February 25–28, 2025,
... performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure...
Abstract
View Papertitled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
View
PDF
for content titled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 936-947, October 22–25, 2013,
... of all weld metal meet the requirements of the base material. Following the recent demand of reduced Mn+Ni content the chemical composition of all weld metal has been modified. For P91 a matching flux cored wire with Mn+Ni<1wt% and for P92 with Mn+Ni<1.2wt% is now available. In this paper...
Abstract
View Papertitled, Flux Cored Wires for Welding Advanced 9-10% Cr Steels
View
PDF
for content titled, Flux Cored Wires for Welding Advanced 9-10% Cr Steels
Flux cored wires are worldwide used in power generation industry due to their technical and economic advantages. For welding P91 and P92 flux cored wires with a rutile slag system are available for several years. Results of long-term investigations up to 30.000 h show that specimens of all weld metal meet the requirements of the base material. Following the recent demand of reduced Mn+Ni content the chemical composition of all weld metal has been modified. For P91 a matching flux cored wire with Mn+Ni<1wt% and for P92 with Mn+Ni<1.2wt% is now available. In this paper the mechanical properties of all weld metal and welded joints are being presented. Latest developments in cast materials have shown that the so-called CB2 (GX13CrMoCoVNbNB 10-1-1) enables steam temperatures up to 620°C (1148°F). Therefore a matching flux cored wire with low Ni-content has been developed. Results of welding procedure qualification and first experience of manufacturing industrial components show the successful implementation of this new material grade and welding consumable.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
... Abstract A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation...
Abstract
View Papertitled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
View
PDF
for content titled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 575-586, October 25–28, 2004,
... Abstract To improve microstructure stability at temperature up to 700°C and avoid segregation of Nb during melting processes, we modified the chemical composition of conventional Ni-Fe base super alloy(Ni-36Fe-16Cr-3Nb-1.7Ti-0.3Al:Alloy706). It is known that Alloy706 is strengthened by γ'(Ni 3...
Abstract
View Papertitled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
View
PDF
for content titled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
To improve microstructure stability at temperature up to 700°C and avoid segregation of Nb during melting processes, we modified the chemical composition of conventional Ni-Fe base super alloy(Ni-36Fe-16Cr-3Nb-1.7Ti-0.3Al:Alloy706). It is known that Alloy706 is strengthened by γ'(Ni 3 Al) phase and γ”(Ni 3 Nb) phase. But these phases are unstable at high temperature and transform into Nb rich δ or η) phase after long-term exposure to elevated temperature. Therefore modified alloy contains lower Nb and higher Al than those of Alloy706, and it is mainly strengthened by γ’(Ni 3 Al) phase. In fact we could not find δ or η phase in the modified alloy after creep and aging at 700 °C. Tensile strengths of the modified alloy at temperature from room temperature to 700 °C were almost same as those of Alloy706. Yield strength of modified alloy at room temperature was slightly lower than that of Alloy706, but equivalent to that of Alloy706 at higher temperatures. Tensile and yield strengths of the modified alloy at temperature from room temperature to 700 °C were higher than those of Alloy706 after aging at 700 °C. In this paper, we discuss effects of Nb and Al on mechanical properties and microstructure at elevated temperature up to 700 °C, using mechanical testing, TEM observations and thermodynamics calculation results. And we show advantages of the microstructure stabilized Ni-Fe base superalloy(FENIX-700), which is a candidate material for 700 °C class USC steam turbine rotor.
Proceedings Papers
Advanced 9-12%Cr Cast Steel Grades: Research, Foundry Process Development, Quality, and Experience
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 638-652, October 25–28, 2004,
... enhancement of material creep resistance. Steel foundries alone cannot conduct necessary material development at an appropriate scale, so all power plant component suppliers cooperate to define optimal chemical compositions, perform test melts, creep tests, microstructure investigations, and test pilot...
Abstract
View Papertitled, Advanced 9-12%Cr Cast Steel Grades: Research, Foundry Process Development, Quality, and Experience
View
PDF
for content titled, Advanced 9-12%Cr Cast Steel Grades: Research, Foundry Process Development, Quality, and Experience
Steel castings of creep-resistant steels are critical components in the high and intermediate pressure turbine sections of fossil fuel-fired power plants. As plant efficiencies improve and emission standards tighten, steam parameters become more stringent, necessitating constant enhancement of material creep resistance. Steel foundries alone cannot conduct necessary material development at an appropriate scale, so all power plant component suppliers cooperate to define optimal chemical compositions, perform test melts, creep tests, microstructure investigations, and test pilot components, such as through the COST program developing new 9-12%Cr cast steel grades. This paper illustrates a steel foundry's role in COST, describing the transfer of these new cast steel grades from research into commercial production of heavy cast components, outlining incurred problems, process development cycles, comparisons with low-alloy steels, welding tests, base material/weld investigations, heat treatment optimization, and casting of pilot components/weldability test plates to verify castability of larger parts and make necessary adjustments. Parallel to ongoing COST creep tests, the steel grades were introduced into commercial large component production, involving solutions to process-related issues, with over 180 components successfully manufactured to date, while further COST program developments present ongoing challenges.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 11-21, October 21–24, 2019,
.... In contrast, microcantilever fracture tests do not show this effect but indicate that the fracture toughness is independent of crystal structure and chemical composition of the NbCo 2 Laves phase. chemical composition crystal structure diffusion couple technique focused ion beam milling fracture...
Abstract
View Papertitled, Micromechanics of Co-Nb Laves Phases: Strength, Fracture Toughness, and Hardness as Function of <span class="search-highlight">Composition</span> and Crystal Structure
View
PDF
for content titled, Micromechanics of Co-Nb Laves Phases: Strength, Fracture Toughness, and Hardness as Function of <span class="search-highlight">Composition</span> and Crystal Structure
Laves phases are intermetallic phases well known for their excellent strength at high temperatures but also for their pronounced brittleness at low temperatures. Especially in high-alloyed steels, Laves phases were long time regarded as detrimental phases as they were found to embrittle the material. Perusing the more recent literature, it seems the negative opinion about the Laves phases has changed during the last years. It is reported that, if the precipitation morphology is properly controlled, transition metal-based Laves phases can act as effective strengthening phases in heat resistant steels without causing embrittlement. For a targeted materials development, the mechanical properties of pure Laves phases should be known. However, the basic knowledge and understanding of the mechanical behavior of Laves phases is very limited. Here we present an overview of experimental results obtained by micromechanical testing of single-crystalline NbCo 2 Laves phase samples with varying crystal structure, orientation, and composition. For this purpose, diffusion layers with concentration gradients covering the complete homogeneity ranges of the hexagonal C14, cubic C15 and hexagonal C36 NbCo 2 Laves phases were grown by the diffusion couple technique. The hardness and Young's modulus of NbCo 2 were probed by nanoindentation scans along the concentration gradient. Single-phase and single crystalline microcantilevers and micropillars of the NbCo 2 Laves phase with different compositions were cut in the diffusion layers by focused ion beam milling. The fracture toughness and the critical resolved shear stress (CRSS) were measured by in-situ microcantilever bending tests and micropillar compression tests, respectively. The hardness, Young's modulus and CRSS are nearly constant within the extended composition range of the cubic C15 Laves phase, but clearly decrease when the composition approaches the boundaries of the homogeneity range where the C15 structure transforms to the off stoichiometric, hexagonal C36 and C14 structure on the Co-rich and Nb-rich, respectively. In contrast, microcantilever fracture tests do not show this effect but indicate that the fracture toughness is independent of crystal structure and chemical composition of the NbCo 2 Laves phase.
1