Skip Nav Destination
Close Modal
Search Results for
ceramic matrix composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 25
Search Results for ceramic matrix composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused...
Abstract
View Papertitled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
View
PDF
for content titled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused not only by the continuity of Mo solid solution in solidification microstructure but also by TiC phase affecting as a fracture-resistant phase. In order to understand the microstructure evolution during solidification and the effect of TiC phase on the fracture toughness of the MoSiBTiC alloy, Mo-Ti-C ternary model alloys are dealt with in this study. Then, (1) liquidus surface projection and (2) isothermal section and the elastic moduli of TiC phase in equilibrium with Mo solid solution were focused on. The obtained liquidus surface projection suggests that the ternary transition peritectic reaction (L+ Mo 2 C->Mo+TiC) takes place in Mo-rich region. At 1800 °C, TiC phase in equilibrium with Mo phase contains at least 20.2 at% Mo and the Mo/TiC/Mo 2 C three phase region should exist around Mo-15Ti-10C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 62-73, February 25–28, 2025,
... Abstract Gas turbine efficiency is typically limited by the maximum allowable temperature for components at the inlet side and in the hot gas flow. Refractory alloys and SiC/SiC ceramic-matrix composites (CMCs) are promising candidates for advancing operating temperatures beyond those of Ni...
Abstract
View Papertitled, High Temperature Mechanical Behavior of Refractory Alloys with Digital Image Correlation
View
PDF
for content titled, High Temperature Mechanical Behavior of Refractory Alloys with Digital Image Correlation
Gas turbine efficiency is typically limited by the maximum allowable temperature for components at the inlet side and in the hot gas flow. Refractory alloys and SiC/SiC ceramic-matrix composites (CMCs) are promising candidates for advancing operating temperatures beyond those of Ni-based alloys (>1200 °C). Refractory alloys are more suitable than SiC/SiC CMCs for dynamic components, due to the latter's low toughness and ductility. However, it is well known that refractory alloys suffer from poor oxidation behavior under service lifetimes and conditions, leading to embrittlement concerns. The ARPA-E ULTIMATE program has set out to combine new alloys with advanced coatings to mitigate oxidation/embrittlement effects, while increasing the mechanical performance benefits of refractory materials. Low oxygen (inert gas) or vacuum systems are needed to assess high temperature mechanical performance of developed alloys. To investigate the environmental sensitivity of candidate alloys and develop high temperature testing capabilities, four argon tensile frames were upgraded as well as a single vacuum system at Oak Ridge National Laboratory. Digital image correlation was incorporated into the vacuum frame allowing for surface strain determination and refined insight into thermomechanical response. Creep testing was performed at 1300 °C on two alloys, C-103 and MHC in vacuum and high purity argon environments. The Mo-based alloy showed less sensitivity to oxygen, indicating that testing in well-controlled argon environments may be suitable. The C-103 alloy demonstrated a stronger sensitivity to oxygen in the well-controlled argon environment, illustrating the need for the developed vacuum testing capabilities. “Small” 25 mm and “large” 76 mm MHC specimens showed comparable results in terms of strain rate during creep testing and ultimate tensile strength during tensile testing, suggesting the viability of smaller geometries that use less material of advanced developmental alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, February 25–28, 2025,
... presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes...
Abstract
View Papertitled, Fiber-jacketed Creep Resistant Pipes for High-Temperature Applications
View
PDF
for content titled, Fiber-jacketed Creep Resistant Pipes for High-Temperature Applications
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 596-606, October 22–25, 2013,
... in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity...
Abstract
View Papertitled, Investigation of Creep Damage and Cavitation Mechanisms in P92 Steels
View
PDF
for content titled, Investigation of Creep Damage and Cavitation Mechanisms in P92 Steels
Contrary to expectations, long-term performance of creep stress enhanced ferritic steels (CSEF) falls short of predictions based on short-term data. This discrepancy is attributed to the formation and growth of creep voids, leading to reduced ductility. This study investigates cavities in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity formation. Using a 3D “slice and view” technique with a focused ion beam/field emission gun scanning electron microscope (FIB-FEGSEM), the study revealed irregular shapes for both cavities and associated particles. Furthermore, analysis of the head-gauge transition area (lower stress exposure) showed small cavities near BN particles, suggesting preferential nucleation on these hard, irregular features. These findings strongly support the hypothesis that BN particles play a key role in cavity nucleation, impacting the long-term performance of P92 steel.
Proceedings Papers
Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Free
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 821-838, August 31–September 3, 2010,
... / dislocator type. Typically the filler materials are of a ceramic nature and therefore relatively oxidation resistant at the test temperature selected so that the composition of the metallic matrix and the level of coating porosity become the coating features that determine the oxidation performance...
Abstract
View Papertitled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
View
PDF
for content titled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Abradability, erosion and steam oxidation tests were conducted on commercial and experimental abradable coatings in order to evaluate their suitability for applications in steam turbines. Steam oxidation tests were carried out on free-standing top coat samples as well as coating systems consisting of a bond and an abradable top coat. Mapping of the abradability performance under widely varied seal strip incursion conditions was carried out for a candidate abradable coating that showed good steam oxidation performance in combination with good erosion resistance. The abradability tests were carried out on a specially designed test rig at elevated temperatures. The steam oxidation analysis combined with the abradability mapping results provide a potentially improved seal coating system that can be integrated into existing steam turbine designs for various seal locations. Such design integration is easily achieved and can be applied to steam turbine components that are sprayed in dedicated coating shops or even at the site of final turbine assembly.
Proceedings Papers
Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 96-103, October 21–24, 2019,
... and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep...
Abstract
View Papertitled, Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
View
PDF
for content titled, Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
To save fossil fuel resources and to reduce CO 2 emissions, considerable effort has been directed toward researching and developing heat-resistant materials that can help in improving the energy efficiency of thermal power plants by increasing their operational temperature and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep tests for 15Cr-1Mo-6W-3Co-V-Nb steels with ferrite matrix strengthened by a mainly Laves phase (Fe 2 W) showed that the creep strengths of 15Cr ferritic steel at temperatures ranging from 923 K to 1023 K were twice as high as those of conventional 9Cr ferric heat-resistant steel. 15Cr steels have higher steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions, especially that of carbon, in order to improve the high-temperature creep strength.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
... is generated on the outside diameter surface using ceramic heating resistance pads it can be expected that a temperature gradient will exist through the wall thickness such that the inside diameter of a large bore piping weld might only reach a temperature of ~675°C (1250°F). Details for the compositional...
Abstract
View Papertitled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
View
PDF
for content titled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... to be an austenitic matrix with MX carbonitride precipitates. Compositional and microstructural details of such steels are reported in our previous study [15]. Then, the creator should link the tailored microstructural features to a specific composition and related heat treatment parameters via employing various go...
Abstract
View Papertitled, A Computational Design Study of Novel Creep Resistant Steels for Fossil Fuel Power
View
PDF
for content titled, A Computational Design Study of Novel Creep Resistant Steels for Fossil Fuel Power
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 520-530, October 3–5, 2007,
... particles and by improving the stability of the tempered martensitic matrix. These chemical compositional modifications may also have significant effects on the surface 520 degradation mechanisms of these steels. In this paper, we will examine the effects of alloying elements on the high temperature...
Abstract
View Papertitled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
View
PDF
for content titled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650°C for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 470-486, August 31–September 3, 2010,
... test program to develop an elevated temperature erosion test standard. Initial test conditions and test matrix have been developed for this round robin test program. Type 410 stainless steel substrate will be used at impingement angles of 30 and90 degrees with 50 micron alumina erodent with particle...
Abstract
View Papertitled, High-Temperature Erosion Testing Standard and Round Robin Testing
View
PDF
for content titled, High-Temperature Erosion Testing Standard and Round Robin Testing
An international initiative is underway to develop the first standardized high-temperature solid particle erosion test method for steam turbine applications, addressing limitations of the current room-temperature ASTM G76 standard. Led by EPRI, this program involves laboratories from seven countries in a “Round Robin” testing program, aiming to establish consistent testing procedures for evaluating erosion resistance of materials used in Ultra Supercritical (USC) and advanced USC turbines. The proposed standard will use Type 410 stainless steel tested at 30 and 90-degree impingement angles with 50-micron alumina particles at 200 m/s, both at room temperature and 600°C, providing more relevant conditions for current and next-generation steam turbine applications.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 540-551, February 25–28, 2025,
... ranging from 11 to 45 m, were used depending on the cold-spray process either cleaning or coating. Details of these processes are provided in the cold-spray process section, below. The compositions of the sample plates and the cold-spray powders utilized in this study are listed in Table 1. Table 1...
Abstract
View Papertitled, Investigation of Cold-spray Performance for Cleaning and Repair of Dry Cask Storage System (DCSS) Canisters within a Characteristic Confinement
View
PDF
for content titled, Investigation of Cold-spray Performance for Cleaning and Repair of Dry Cask Storage System (DCSS) Canisters within a Characteristic Confinement
Extended storage of spent nuclear fuel (SNF) in intermediate dry cask storage systems (DCSS) due to lack of permanent repositories is one of the key issues for sustainability of the current domestic Light Water Reactor (LWR) fleet. The stainless steel canisters used for storage in DCSS are potentially susceptible to chloride-induced stress corrosion cracking (CISCC) due to a combination of tensile stresses, susceptible microstructure, and a corrosive chloride salt environment. This research assesses the viability of the cold-spray process as a solution to CISCC in DCSS when sprayed with miniature tooling within a characteristic confinement in two different capacities: cleaning and coating. In general, the cold-spray process uses pressurized and preheated inert gas to propel powders at supersonic velocities, while remaining solid-state. Cold-spray cleaning is an economical, non-deposition process that leverages the mechanical force of the propelled powders to remove corrosive buildup on the canister, whereas the cold spray coating process uses augmented parameters to deposit a coating for CISCC repair and mitigation purposes. Moreover, both processes have the potential to induce a surface compressive residual stress that is known to impede the initiation of CISCC. Surface morphology, deposition analysis, and microstructural developments in the near-surface region were examined. Additionally, cyclic corrosion testing (CCT) was conducted to elucidate the influence of cold-spray cleaning and coating on corrosion performance.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1138-1148, October 11–14, 2016,
... neutral gas (argon) isostatic pressure at elevated 1139 temperature [5]. Chemical composition by weight percentage (wt%) of the powder used to produce H-282 alloy is listed in Table 1: Table 1 Powder chemical composition for Haynes 282-SINT alloy fabrication Ni Cr Co Mo Ti Al Fe Mn Si C B 57 20 10 8.5 2.1...
Abstract
View Papertitled, Corrosion Products Development on Haynes282 Gamma - Prime (γ') Strengthened Alloy at 550 °C Under Salt Mist Conditions for 500 Hours
View
PDF
for content titled, Corrosion Products Development on Haynes282 Gamma - Prime (γ') Strengthened Alloy at 550 °C Under Salt Mist Conditions for 500 Hours
Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing tests at a variety of temperatures and environments. In this study, the results of a unique technique involving salt spray testing at high temperatures are presented. The Haynes 282 gamma – prime (γ’) strengthened alloy fabricated by means of three different manufacturing processes: HAYNES 282 WROUGHT alloy, Haynes 282-SINT alloy, and finally Haynes 282-CAST alloy have been tested. The materials have been exposed to a salt spray corrosion atmosphere using 1% NaCl - 1% Na 2 SO 4 . Post exposure investigations have included SEM, EDS and XRD examinations. The test using salt spray of 1% NaCl - 1% Na 2 SO 4 water solution at 550 °C for 500 hours indicted no influence on the corrosion products formation, where Cr 2 O 3 has been developed in all three alloys, whereas NiO has been found only in Haynes 282-CAST material. On the other hand, it has been found that the fabrication process of HAYNES 282 alloy strongly influences the corrosion products formation under the high temperature exposures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 669-677, February 25–28, 2025,
... dense coating with high adhesion and cohesion bond strengths [10, 11]. The most essential advantages of thermal spraying techniques are: Almost all materials (polymers, metals, metallic alloys, ceramics, and composites) can be used as feedstock. Nearly any substrate can be coated. Low thermal...
Abstract
View Papertitled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
View
PDF
for content titled, High-Performance Corrosion and Erosion Resistance of an Amorphous Iron-Based Alloy Coating Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C
This presentation compares the corrosion resistance of uncoated Haynes 230 and SS316HS substrates to the same substrates coated with a Fe-based amorphous alloy. The substrates were exposed to highly corrosive media, FLiNaK, for 120 hours at 700 °C. The findings indicate that the thermal spray amorphous alloy coating provided superior corrosion resistance within the coatings while protecting the substrates against the aggressive environment. As a result, the new amorphous metal coating improved the substrate's lifespan by providing better protection against high-temperature corrosion, paving the way for a more efficient and cost-effective future in various industrial applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 832-843, October 11–14, 2016,
... of a pre-existing internal oxidation zone. Due to the small size of the internal oxide, it is not possible to accurately determine its chemical composition with EDS on bulk samples without measuring the surrounding alloy matrix, however, despite the detection of iron the quantities of chromium and silicon...
Abstract
View Papertitled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
View
PDF
for content titled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
Oxide scale formation in the inner bore of steam tubing has been identified as a key metric for determining operational parameters and life expectancy of modern boiler systems. Grade 91 tubing is commonly used for the construction of key components within boiler systems designed for power generation operating in the temperature range of 500 to 650 °C. Standard laboratory test procedures involve grinding the surface of test coupons to homogenise their surface structure and improve experimental consistency, however, data presented here shows a discrepancy between laboratory and industrial practices that has long term implications on scale growth kinetics and morphological development. Microstructural analysis of both virgin and ex-service tubing reveals the presence of a pre-existing oxide structure that is incorporated into the inwardly growing scale and is implicated in the formation of multiple laminar void networks. These void networks influence thermal diffusivity across the scale and may function as regions of spallation initiation and propagation.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 281-292, October 3–5, 2007,
... composition making sure long-term precipitate stability at service temperatures, and c) delaying or eliminating the causes of failure (such as, formation of brittle sigma phase). Nitrogen has been added to improve the strength of the austenitic matrix by solid solution strengthening. For the proposed USC...
Abstract
View Papertitled, Creep Properties of Advanced Steels for High Efficiency Power Plants
View
PDF
for content titled, Creep Properties of Advanced Steels for High Efficiency Power Plants
Driven mainly by the environmental and economic concerns, there is an urgent need for increasing the thermal efficiency of fossil fuel power generation plants, which still languishes at around 32% under current practices. Several programs have been undertaken worldwide to address this issue. One of the immediate options is to increase the steam temperature and pressure (to the supercritical range). However, the current power plant materials appear to have inadequate creep resistance under these demanding conditions along with corrosion/oxidation problems. Hence, to meet these challenges a variety of new steels and stainless steels have been developed in the United States, Japan, and Europe. Alloy design and microstructural design approaches in developing these alloys (ferritic/martensitic, austenitic and oxide-dispersion- strengthened steels) will be briefly reviewed. Further, this paper presents creep data of these steels found in the literature in terms of Larson-Miller parameters (LMP). A detailed account of plausible creep micromechanisms in these advanced steels is also be summarized.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1014-1023, October 21–24, 2019,
... fuels in power plants currently results in the generation of ~35-40% of the electricity used around the world [1]. Coal and biomass combustion are complex processes, with the minor and trace compounds from these fuels generating a range of chemical species whose composition and quantity depend upon...
Abstract
View Papertitled, Approaches to Modeling Fireside Corrosion of Superheater/Reheater Tubes in Coal and Biomass Fired Combustion Power Plants
View
PDF
for content titled, Approaches to Modeling Fireside Corrosion of Superheater/Reheater Tubes in Coal and Biomass Fired Combustion Power Plants
The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead to fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 413-423, October 3–5, 2007,
... turbine blades, the single crystal René N5 matrix was selected in this program for its high temperature creep resistant characteristics, and oxidative stability which results from the formation of a protective external alumina scale. As a combustor liner or disc matrix, the nickel-based superalloy, Haynes...
Abstract
View Papertitled, Materials and Component Development for Advanced Turbine Systems
View
PDF
for content titled, Materials and Component Development for Advanced Turbine Systems
In order to meet the 2010-2020 DOE Fossil Energy goals for Advanced Power Systems, future oxy-fuel and hydrogen-fired turbines will need to be operated at higher temperatures for extended periods of time, in environments that contain substantially higher moisture concentrations in comparison to current commercial natural gas-fired turbines. Development of modified or advanced material systems, combined with aerothermal concepts are currently being addressed in order to achieve successful operation of these land-based engines. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) has initiated a research program effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers as Howmet International and Coatings for Industry (CFI), and test facilities as Westinghouse Plasma Corporation (WPC) and Praxair, to develop advanced material and aerothermal technologies for use in future oxy-fuel and hydrogen-fired turbine applications. Our program efforts and recent results are presented.
Proceedings Papers
Pablo Andrés Gómez Flórez, Alejandro Toro Betancur, John Edison Morales Galeano, Jeisson Mejía Velásquez
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 247-258, February 25–28, 2025,
... thermocouples for temperature monitoring and ceramic fiber composite material for thermal insulation. The welds were performed in two main stages: manual orbital build-up and mechanized longitudinal overlay as shown in Figure 8A. After application, the welds were subjected to the same vibration stress relief...
Abstract
View Papertitled, PAW and GTAW Welding Repair of HP/IP and Generator Rotors of a Steam Turbine for Electric Power Generation
View
PDF
for content titled, PAW and GTAW Welding Repair of HP/IP and Generator Rotors of a Steam Turbine for Electric Power Generation
This work describes the repair procedure conducted on the High Pressure/Intermediate Pressure (HP/IP) and generator rotors of a 180 MW steam turbine General Electric (GE) - STAG207FA type D11 installed at La Sierra Thermoelectric Power Plant in Puerto Nare, Colombia. A lubricant supply failure at base load caused severe adhesive damage to the shafts in the bearing support areas and a permanent 3.5 mm bow at the HP/IP rotor mid span section, which required a complex intervention. The repair process began with the identification of the rotors manufacturing material through in-situ metallographic replicas, handheld XRF analysis and surface hardness measurements. Volumetric manual Gas Tungsten Arc Welding (GTAW) welding reconstruction of cracked areas followed by a surface overlay using GTAW and Plasma Arc Welding (PAW) welding processes were applied with a modular mechanized system, where a stress relief treatment through vibration was implemented with the help of computational simulations carried out to determine the fundamental frequencies of the rotors. Geometric correction of the HP/IP rotor mid span section was achieved thanks to the excitation of the rotor at some fundamental frequencies defined by the dynamic modeling and the use of heat treatment blankets at specific locations as well. Finally, after machining and polishing procedures, the power unit resumed operation eleven months after the failure and remains in service to the present date.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 714-731, October 22–25, 2013,
... contain 9 to 12%Cr; typical compositions of P91, P92 and E911 are compared with X20 in Table 1. These steels are favored in a range of boiler applications because of the combination of properties which include; high thermal conductivity, low thermal expansion coefficient, low susceptibility to thermal...
Abstract
View Papertitled, Creep Cavitation in CSEF Steels
View
PDF
for content titled, Creep Cavitation in CSEF Steels
As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below that originally predicted from a simple extrapolation of short term data. One of the microstructural degradation mechanisms responsible for the reduction in strength is the development of creep voids. Nucleation, growth and inter linkage of voids also result in a significant loss of creep ductility. Indeed, elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant densities of voids further complicates in-service assessment of condition and weld repair of these steels. The present paper examines background on the nucleation and development of creep voids in 9 to 12%Cr martensitic steels and discusses factors affecting brittle behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
... plant is shown in Figure 2 [7] The composition of the scale is mainly magnetite (Fe3O4). The particle size distribution varies from about 5 microns to 100 microns. Depending on the volume fraction, velocity, angle of the particles, the erosion characteristics will vary. 383 Figure 2. Particle size...
Abstract
View Papertitled, High-Temperature Solid Particle Erosion Testing Standard for Advanced Power Plant Materials and Coatings
View
PDF
for content titled, High-Temperature Solid Particle Erosion Testing Standard for Advanced Power Plant Materials and Coatings
Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance, a similar need exists for steam turbines. Existing room-temperature SPE test standards are insufficient for evaluating turbine materials. To address this gap, an EPRI program is developing an elevated-temperature SPE standard. This collaborative effort, involving researchers from multiple countries, has yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development.
1