Skip Nav Destination
Close Modal
Search Results for
casting discontinuities
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-15 of 15
Search Results for casting discontinuities
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 535-551, October 25–28, 2004,
... final material selection and characterization. Factors limiting inner casing material capabilities include casting size/shape, ability to inspect for discontinuities, stress rupture strength, and weldability for fabrication and repairs. Given the need for precipitation-strengthened nickel-base alloys...
Abstract
View Papertitled, Review of Turbine Materials for use in Ultra-Supercritical Steam Cycles
View
PDF
for content titled, Review of Turbine Materials for use in Ultra-Supercritical Steam Cycles
A study is being conducted on turbine materials for use in ultra-supercritical (USC) steam power plants, with the objective of ensuring no material-related impediments regarding maximum temperature capabilities and the ability to manufacture turbine components. A review of the state-of-the-art and material needs for bolting and casing applications in USC steam turbines was performed to define and prioritize requirements for the next-generation USC turbines. For bolting, several potentially viable nickel-base superalloys were identified for service at 760°C, with the major issues being final material selection and characterization. Factors limiting inner casing material capabilities include casting size/shape, ability to inspect for discontinuities, stress rupture strength, and weldability for fabrication and repairs. Given the need for precipitation-strengthened nickel-base alloys for the inner casing at 760°C, the material needs are two-fold: selection/fabrication-related and characterization. The paper provides background on turbine components and reviews the findings for bolting and casing materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, February 25–28, 2025,
... to lack of fusion or weld metal discontinuities. INTRODUCTION CF8C-Plus is a cast austenitic stainless steel, officially recognized under the Unified Numbering System (UNS) as J92604 and designated by ASTM as HG10MnN. This advanced alloy represented a significant improvement over its predecessor, CF8C...
Abstract
View Papertitled, Evaluation of the Mechanical Properties of <span class="search-highlight">Cast</span> and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
View
PDF
for content titled, Evaluation of the Mechanical Properties of <span class="search-highlight">Cast</span> and Wrought CF8C-Plus Relevant to ASME Code Case Qualification
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
.... The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates...
Abstract
View Papertitled, Precipitation Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) Phases in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
View
PDF
for content titled, Precipitation Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) Phases in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
High Temperature Properties of Ni-38-Cr-3.8Al with High Hardness and High Hot Corrosion Resistance
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 398-404, October 21–24, 2019,
.... 18-28. [3] D. Turnbull, Theory of cellular precipitation , Acta Metall., Vol. 3, No. 1, (1955), pp. 55-63. [4] R. Kossowsky, Cellular precipitation in Ni-51Cr lamellar eutectic and cast Ni-44Cr alloys , Metall. Trans., Vol. 1, No. 6, (1970), pp. 1623-1627. [5] W. Gust et al. , Discontinuous...
Abstract
View Papertitled, High Temperature Properties of Ni-38-Cr-3.8Al with High Hardness and High Hot Corrosion Resistance
View
PDF
for content titled, High Temperature Properties of Ni-38-Cr-3.8Al with High Hardness and High Hot Corrosion Resistance
Ni-38Cr-3.8Al has high hardness and high corrosion resistance with good hot workability, and therefore, it has been applied on various applications. However, in order to expand further application, it is important to understand the high temperature properties. Then, this study focused on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced by the temperature. Although the high temperature properties, except for creep property, of Ni-38Cr-3.8Al were superior to those of conventional Ni-based superalloys, the properties were dramatically degraded beyond 973 K. This is because the lamellar structure begins to collapse around 973 K due to the thermal stability of the lamellar structure. The hot corrosion resistance of Ni-38Cr-3.8Al was superior to that of conventional Ni-based superalloys, however, the advantage disappeared around 1073 K. These results indicate that Ni-38Cr-3.8Al is capable as a heat resistant material which is required the hot corrosion resistance rather than a heat resistant material with high strength at high temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 795-802, October 21–24, 2019,
... Abstract The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several...
Abstract
View Papertitled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
View
PDF
for content titled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates are largely rotated and Moss works as sticky ligament in the small-plate-reinforced metal-matrix composites. This may be the reason why the MoSiBTiC alloy exhibits large creep elongation and excellent creep resistance. In other words, the evolution of microstructures infers that the consummation of Mo 5 SiB 2 plate rotation may lead to the initiation of creep rapture process. Therefore, the unique microstructure formed during solidification provides the feature of good mechanical properties for the 1st generation MoSiBTiC alloy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 348-359, October 21–24, 2019,
... programme. Cast and forged product forms were produced and tested within IMPACT which demonstrated a consistent 2530% improvement based on the creep strength of Grade 92 steel. Within the project, work was 348 also carried out to optimise heat treatment procedures, for example, to ensure that the B within...
Abstract
View Papertitled, Microstructural Analysis of Service Exposed IBN1 MarBN Steel Boiler Tubing
View
PDF
for content titled, Microstructural Analysis of Service Exposed IBN1 MarBN Steel Boiler Tubing
Extensive research and development has been undertaken in the UK on MarBN steels. These were first proposed by Professor Fujio Abe from NIMS in Japan. Within the UK, progress has been made towards commercialisation of MarBN-type steel through a series of Government funded industrial collaborative projects (IMPACT, IMPEL, INMAP and IMPULSE). As part of the IMPACT project, which was led by Uniper Technologies, boiler tubes were manufactured from the MarBN steel developed within the project, IBN1, and installed on the reheater drums of Units 2 and 3 of Ratcliffe-on-Soar Power Station. The trial tubes were constructed with small sections of Grade 91 tubing on either side of the IBN1 to allow direct comparison after the service exposure. This is the world’s first use of a MarBN steel on a full-scale operational power plant. In September 2018 the first tube was removed having accumulated 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 884-896, October 3–5, 2007,
.... This plant occupies more than 22 acres adjacent to Milwaukee between the south Menomonee canal and the Menomonee River. The pulverized coal fired at this station during a portion of this test was blended with approximately 9% petroleum coke. The plant discontinued this addition in April of 2003. Unit 2...
Abstract
View Papertitled, Selection of Erosion Resistant Materials in the Severe Environment of Coal Fired Power Plants
View
PDF
for content titled, Selection of Erosion Resistant Materials in the Severe Environment of Coal Fired Power Plants
Competitive pressures throughout the power generation market are forcing individual power plants to extend time between scheduled outages, and absolutely avoid costly forced outages. Coal fired power plant owners expect their engineering and maintenance teams to identify, predict and solve potential outage causing equipment failures and use the newest advanced technologies to resolve and evade these situations. In coal fired power plants, erosion not only leads to eventual failure, but during the life cycle of a component, affects the performance and efficiency due to the loss of engineered geometry. “Wear” is used very generally to describe a component wearing out; however, there are numerous “modes of wear.” Abrasion, erosion, and corrosion are a few of the instigators of critical component wear, loss of geometry, and eventual failure in coal fired plants. Identification of the wear derivation is critical to selecting the proper material to avoid costly down-times and extend outage to outage goals. This paper will focus on the proper selection of erosion resistant materials in the severe environment of a coal fired power plant by qualifying lab results with actual field experiences.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1081-1092, October 22–25, 2013,
...® 22 H plate material, which was manufactured by Outokumpu VDM (formerly ThyssenKrupp VDM) by conventional arc melting. The Crofer 22 model steel and the advanced materials (Tab. 1) were produced by Outokumpu VDM by vacuum melting of approximately 10 kg ingots. The casted blocks were annealed...
Abstract
View Papertitled, Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases
View
PDF
for content titled, Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases
Constricted steam oxidation resistance and finite microstructural stability limits the use of 9 - 12 wt.-% chromium ferritic-martensitic steels to steam temperatures of about 620 °C. Newly developed 12 wt.-% Cr steels are prone to Z-phase precipitation, which occurs at the expense of the strengthening precipitates, and therefore suffer an accelerated decline in strength during longterm operation. While the concept of ferritic-martensitic chromium steels thus seems to hit technological limitations, further improvement in steam power plant efficiency necessitates a further increase of steam pressure and temperature. Furthermore increasing integration of intermitting renewable energy technologies in electrical power generation poses a great challenge for supply security, which has to be ensured on the basis of conventional power plant processes. Besides improved efficiency for resource preservation, load flexibility, thermal cycling capability and downtime corrosion resistance will play key roles in the design of tailored materials for future energy technology. Under these preconditions a paradigm shift in alloy development towards improvement of cyclic steam oxidation and downtime corrosion resistance in combination with adequate creep and thermomechanical fatigue strength seems to be mandatory. The steam oxidation, mechanical and thermomechanical properties of fully ferritic 18 - 24 wt.-% chromium model alloys, strengthened by the precipitation of intermetallic (Fe,Cr,Si)2(Nb,W) Laves phase particles, indicate the potential of this type of alloys as candidate materials for application in highly efficient and highly flexible future supercritical steam power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 516-529, October 11–14, 2016,
... sample removal to reduce any surface discontinuities that may increase stress concentration locally. A step at the centre line is usually present post cut as it is a two stage process; its removal is a requirement. Through practice it has been found that excavation depths within 10% of the pipe wall...
Abstract
View Papertitled, Impression Creep Testing and Its Role in Power Plant Component Integrity Management
View
PDF
for content titled, Impression Creep Testing and Its Role in Power Plant Component Integrity Management
The impression creep test method using a rectangular indenter has been well established and the applicability of the technique has been supported by the test data for a number of metallic materials at different temperatures and stresses. The technique has proved to be particularly useful in providing material data for on-site creep strength assessments of power plant components operating in the creep regime. Due to these reasons, “standard” assessment procedures using the impression testing method are needed in order for the technique to be more widely used. This paper will first address some key issues related to the use of the impression creep test method, involving the data conversion method, typical test types and validity of the test technique etc. Then some recommendations on a number of practical aspects, such as the basic requirements of test rigs, “standard” specimen geometry, indenter dimensions, sampling procedures for scoop samples, specimen preparation, temperature and loading control, and displacement measurement, are briefly addressed. Finally, applications of the test data to assist with the risk management and life assessment programme of power plant components, particularly those with service-exposed materials, using data obtained from scoop samples, are described. Proposals for future exploitation and for improvement of the technique are addressed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
..., both at grain boundaries and in grains interior. Fine Mo-rich M6C and Cr-rich M23C6 were observed sparsely and discontinuously in the grains interior and along grain boundaries. There was no sign of precipitation of particles in the as-received Haynes 282 under investigation. In Fig. 1(c...
Abstract
View Papertitled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
View
PDF
for content titled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... weld metal as well as through the cast microstructure as a result of the welding process and through the subsequent post weld heat treatment. Thus, the base material microstructure usually exhibits a more homogenous microstructure compared to the weld metal which is beneficial with respect to impact...
Abstract
View Papertitled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
View
PDF
for content titled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 235-246, February 25–28, 2025,
..., the Ta-containing alloy shows a fully passivated, continuous, and thin alumina scale dominating the alloy surface accompanied by discontinuous remnants of transient products. Finally, for the hypercritical alloy series, all alloys formed a continuous alumina scale, however while the base and Re...
Abstract
View Papertitled, Use of Modeling and Experiments to Assess the Effect of Minor Alloying Additions on Alumina Scale Formation during High-Temperature Oxidation
View
PDF
for content titled, Use of Modeling and Experiments to Assess the Effect of Minor Alloying Additions on Alumina Scale Formation during High-Temperature Oxidation
During the last decades, new generations of Ni-based superalloys have emerged with judiciously controlled chemistries. These alloys heavily rely on the addition of refractory elements to enhance their mechanical properties at elevated temperatures; however, a clear interpretation of the influence of these minor-element additions on the alloy's high-temperature oxidation behavior is still not well understood, particularly from the standpoint of predicting the transition from internal to external alumina formation. In this context, the present investigation describes a systematic study that addresses the intrinsic effects that minor element additions of Nb, Ta, and Re have on the oxidation behavior of alumina-scale forming γ-Ni alloys. By combining a novel simulation approach with high-temperature oxidation experiments, the present study evidences the generally positive effect associated with 2 at. % addition of Ta and Re as well as the detrimental consequences of Nb additions on the 1100 °C oxidation of (in at. %) Ni-6Al-(0,4,6,8)Cr alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1014-1023, October 21–24, 2019,
... contributions: GE Power, Doosan Babcock Limited, Centrica plc., EDF Energy (West Burton Power) Limited., Uniper Technologies Limited, Goodwin Steel Castings Limited, NPL Management Limited, R-MC Power Recovery Limited., RWE Generation UK plc., Scottish and Southern Energy (SSE) plc., Siemens Industrial...
Abstract
View Papertitled, Approaches to Modeling Fireside Corrosion of Superheater/Reheater Tubes in Coal and Biomass Fired Combustion Power Plants
View
PDF
for content titled, Approaches to Modeling Fireside Corrosion of Superheater/Reheater Tubes in Coal and Biomass Fired Combustion Power Plants
The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead to fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1-12, February 25–28, 2025,
..., resulting in considerable amount of recent research, for example for applications under A-USC conditions [1], [2]. Designed as a traditional wrought and cast alloy, initial and predominant data exists for these manufacturing routes, much less so for alternative manufacturing routes, such as Additive...
Abstract
View Papertitled, Characterization of Build Parameters and Microstructure in Low Heat Input Wire-Arc Additive Manufacturing of Ni-based Superalloy Haynes 282
View
PDF
for content titled, Characterization of Build Parameters and Microstructure in Low Heat Input Wire-Arc Additive Manufacturing of Ni-based Superalloy Haynes 282
Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy deposition can create large components but often requires post-processing treatments, such as hot isostatic pressing (HIP), to address porosity. This study explores a low heat-input, high deposition rate GMAW process to achieve fully dense Haynes 282 without HIP. Twenty-one blocks were deposited, varying travel and wire feed speeds. Initial analysis (visual inspection, microstructural examination, and CT) revealed the impact of build parameters on internal porosity and defects. Scanning electron microscopy provided insights into structural heterogeneity and microstructural properties.
Proceedings Papers
Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 436-447, October 22–25, 2013,
.... Figure 20 shows the microstructure observation results. Except for the surface part, the grain size was coarser than that of lab-scale material, but remarkable micro-segregation or residual cast structure was not observed in any parts. There was no remarkable difference in the size and distribution...
Abstract
View Papertitled, Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
View
PDF
for content titled, Development and Evaluation of Large-Scale Rotor Forging for Over 700 °C-Class A-USC Steam Turbine
A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were determined from the mechanical properties and microstructure. We manufactured an actual-scale rotor model made of TOS1X-2. A 31 ton ingot was manufactured, followed by forging of the model rotor with a diameter of 1100 mm and length of 2400 mm without any defects. Metallurgical and mechanical analyses of the model rotor were carried out. All metallurgical and mechanical features of the TOS1X-2 rotor model satisfied the requirements for not only 700°C-class but also over 700°C-class A-USC turbine rotor.