Skip Nav Destination
Close Modal
Search Results for
carbon dioxide
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 43 Search Results for
carbon dioxide
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 998-1003, October 21–24, 2019,
... and CO additions did not seem to significantly affect oxidation rates. On the other hand, O 2 addition resulted in lower weight gains for all alloys, suggesting that O 2 may be primarily affecting corrosion behavior. austenitic stainless steel carbon dioxide corrosion behavior gas impurity...
Abstract
View Paper
PDF
The effect of gas impurities on corrosion behavior of candidate Fe- and Ni-base alloys (SS 316LN, Alloy 800HT, Alloy 600) in high temperature CO 2 environment was investigated in consideration of actual S-CO 2 cycle applications. Preliminary testing in research and industrial grade S-CO 2 at 600 °C (20 MPa) for 1000 h showed that oxidation rates were significantly reduced in industrial-grade S-CO 2 environment. Meanwhile, controlled tests with individual impurity additions such as CH 4 , CO, and O 2 in research-grade CO 2 were performed. The results indicated that CH 4 and CO additions did not seem to significantly affect oxidation rates. On the other hand, O 2 addition resulted in lower weight gains for all alloys, suggesting that O 2 may be primarily affecting corrosion behavior.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1183-1194, October 15–18, 2024,
... Abstract Supercritical carbon dioxide cooling during machining has been identified as an effective measure to mitigate the risk of stress corrosion cracking in materials utilized in the primary circuit of light water reactors, particularly in pressure vessel structural steels. This study aims...
Abstract
View Paper
PDF
Supercritical carbon dioxide cooling during machining has been identified as an effective measure to mitigate the risk of stress corrosion cracking in materials utilized in the primary circuit of light water reactors, particularly in pressure vessel structural steels. This study aims to compare two different cooling methods, the novel supercritical carbon dioxide and conventional high pressure soluble oil, employed during both milling and turning processes for SA508 Grade 3 Class 2 and AISI 316L steels. As the surface conditions of materials are critical to fatigue properties, such as crack initiation and endurance life, the fatigue performance of both cooling methods for each process were then evaluated and the impact on properties determined. To compare the potential benefits of supercritical carbon dioxide cooling against conventional soluble oil cooled machining, fatigue specimens were machined using industry relevant CNC machine tools. Surface finish and machining methods were standardized to produce two different specimen types, possessing dog- bone (milled) and cylindrical (turned) geometries. Force-controlled constant amplitude axial fatigue testing at various stress amplitudes was undertaken on both specimen types in an air environment and at room temperature using a stress ratio of 0.1. The fatigue performance of the supercritical carbon dioxide cooled specimens revealed substantially greater endurance lives for both SA508 and 316L materials, when compared with specimens machined using high pressure soluble oil cooling.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 699-711, October 15–18, 2024,
... Abstract Advanced power generation systems, including advanced ultrasupercritical (A-USC) steam and supercritical carbon dioxide (sCO 2 ) plants operating above 700°C, are crucial for reducing carbon dioxide emissions through improved efficiency. While nickel superalloys meet these extreme...
Abstract
View Paper
PDF
Advanced power generation systems, including advanced ultrasupercritical (A-USC) steam and supercritical carbon dioxide (sCO 2 ) plants operating above 700°C, are crucial for reducing carbon dioxide emissions through improved efficiency. While nickel superalloys meet these extreme operating conditions, their high cost and poor weldability present significant challenges. This study employs integrated computational materials engineering (ICME) strategies, combining computational thermodynamics and kinetics with multi-objective Bayesian optimization (MOBO), to develop improved nickel superalloy compositions. The novel approach focuses on utilizing Ni 3 Ti (η) phase strengthening instead of conventional Ni 3 (Ti,Al) (γ’) strengthening to enhance weldability and reduce costs while maintaining high-temperature creep strength. Three optimized compositions were produced and experimentally evaluated through casting, forging, and rolling processes, with their microstructures and mechanical properties compared to industry standards Nimonic 263, Waspaloy, and 740H. Weldability assessment included solidification cracking and stress relaxation cracking tests, while hot hardness measurements provided strength screening. The study evaluates both the effectiveness of the ICME design methodology and the practical potential of these cost-effective η-phase strengthened alloys as replacements for traditional nickel superalloys in advanced energy applications.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
... with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions...
Abstract
View Paper
PDF
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1024-1035, October 21–24, 2019,
... Abstract Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation...
Abstract
View Paper
PDF
Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation and maintenance of these systems. Sandia has recently explored methods available for in-situ alloy corrosion monitoring. Electrical resistance (ER) was chosen for initial tests due the operational simplicity and commercial availability. A series of long duration (>1000 hours) experiments have recently been completed at a range of temperatures (400-700°C) using ER probes made from four important structural alloys (C1010 Carbon Steel, 410ss, 304L, 316L) being considered for sCO 2 systems. Results from these tests are presented, including correlations between the probe measured corrosion rate to that for witness coupons of the same alloys.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 35-46, October 11–14, 2016,
...) Technical Director, (2) Metallurgist, (3) General Manager Abstract: The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant...
Abstract
View Paper
PDF
The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant operation of up to 700°C and maybe 750°C. This paper discusses the production of prototype MarBN steel castings for potential plant operation up to 650°C, and gamma prime strengthened nickel alloys for advanced super critical plant (A-USC) operation up to 750°C. MarBN steel is a modified 9% Cr steel with chemical concentration of Cobalt and tungsten higher than that of CB2 (GX-13CrMoCoVNbNB9) typically, 2% to 3 Co, 3%W, with controlled B and N additions. The paper will discuss the work undertaken on prototype MarBN steel castings produced in UK funded research projects, and summarise the results achieved. Additionally, within European projects a castable nickel based super alloy has successfully been developed. This innovative alloy is suitable for 700°C+ operation and offers a solution to many of the issues associated with casting precipitation hardened nickel alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... Abstract The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant...
Abstract
View Paper
PDF
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 491-503, October 22–25, 2013,
... Abstract The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels...
Abstract
View Paper
PDF
The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels just don’t have enough strength, and typically have a temperature limit of around 620°C (possibly up to 650°C in the near future) in the HP environment. Therefore, material development has focused on nickel alloys. European programs such as AD700, COMTES, European 50+ and more recently, NextGen Power and Macplus, have investigated the use of nickel alloys in the steam turbine. Large castings have an important role within the steam turbine, because valves bodies and turbine casings are nearly always produced from a cast component. The geometry of these components is often complex, and therefore, the advantage of using castings for such items is that near net shapes can be produced with minimal machining. This is important, as nickel alloys are expensive, and machining is difficult, so castings offer an attractive cost benefit. Cast shapes can be more efficiently designed with regards to stress management. For example, contouring of fillet regions can help to reduce stress concentrations leads to reduced plant maintenance and casting complex shapes reduces the number of onsite fabrication welds to inspect during outage regimes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, October 15–18, 2024,
... Abstract The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized...
Abstract
View Paper
PDF
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 750-759, October 15–18, 2024,
... Abstract Diffusion bonded compact heat exchangers have exceptionally high heat transfer efficiency and might significantly improve the performance and reduce the cost of supercritical carbon-dioxide Brayton cycle power plants using high temperature heat sources, like high temperature nuclear...
Abstract
View Paper
PDF
Diffusion bonded compact heat exchangers have exceptionally high heat transfer efficiency and might significantly improve the performance and reduce the cost of supercritical carbon-dioxide Brayton cycle power plants using high temperature heat sources, like high temperature nuclear reactors and concentrating solar power plants. While these heat exchangers have an excellent service history for lower temperature applications, considerable uncertainty remains on the performance of diffusion bonded material operating in the creep regime. This paper describes a microstructural modeling framework to explore the plausible mechanisms that may explain the reduced creep ductility and strength of diffusion bonded material, compared to wrought material. The crystal plasticity finite element method (CPFEM) is used to study factors affecting bond strength in polycrystals mimicking diffusion bonded microstructures. Additionally, the phase field method is also employed to simulate the grain growth and recrystallization at the bond line to model the bonding process and CPFEM is used to predict the resulting material performance to connect processing parameters to the expected creep life and ductility of the material, and to study potential means to improve the structural reliability of the material and the resulting components by optimizing the material processing parameters.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 885-896, October 15–18, 2024,
..., including carbon dioxide, Energy Procedia, Vol. 37, (2013), pp. 1135 1149. [2] Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., Brown, Jr., G. W., Sasaki, T., Itoh, M., Manning, J., Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical...
Abstract
View Paper
PDF
Supercritical CO 2 (sCO 2 ) is of interest as a working fluid for several concepts including the direct- fired Allam cycle as a low-emission fossil energy power cycle. Over the past 10 years, laboratory exposures at 300 bar sCO 2 have found reasonably good compatibility for Ni-based alloys at <800°C, including an assessment of the sCO 2 impact on room temperature mechanical properties after 750°C exposures. However, initial screening tests at 1 and 20 bar CO 2 at 900°-1100°C showed poor compatibility for Ni-based alloys. In an open cycle, the introduction of 1%O 2 and 0.1- 0.25%H 2 O impurities at 300 bar increased the reaction rates ≥2X at 750°C. At lower temperatures, steels are susceptible to C ingress and embrittlement. Creep-strength enhanced ferritic steels may be limited to <550°C and conventional stainless steels to <600°C. Two strategies to increase those temperatures are higher Ni and Cr alloying additions and Al- or Cr-rich coatings. Alloy 709 (Fe- 20Cr-25Ni) shows some promising results at 650°C in sCO 2 but reaction rates were accelerated with the addition of O 2 and H 2 O impurities. Pack aluminized and chromized Gr.91 (Fe-9Cr-1Mo) and type 316H stainless steel show some promise at 600°-650°C but further coating optimization is needed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 888-899, October 11–14, 2016,
... are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales. Keywords: supercritical, carbon dioxide, oxidation, carburisation, chromia scales, diffusion. INTRODUCTION Supercritical CO2 (SCO2) has advantages as a heat transfer medium and as the working fluid in a closed...
Abstract
View Paper
PDF
Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally pressurised by flowing CO 2 , inducing hoop stresses up to 35 MPa in the tube walls. Materials tested were Haynes alloys 188, 230 and 282, plus HR120 and HR160. These alloys developed chromia scales and, to different extents, an internal oxidation zone. In addition, chromium-rich carbides precipitated within the alloys. Air aging experiments enabled a distinction between carburisation reactions and carbide precipitation as a result of alloy equilibration. The stainless steel was much less resistant to CO 2 attack, rapidly entering breakaway corrosion, developing an external iron-rich oxide scale and internal carburisation. Results are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 844-854, October 11–14, 2016,
...., Stefanakos, E. K., A review of thermodynamic cycles and 851 working fluids for the conversion of low-grade heat, Renewable & Sustainable Energy Reviews, Vol.14, (2010), pp.3059-3067. 2. Dostal, V., Hejzlar, P., Driscoll, M. J., High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation...
Abstract
View Paper
PDF
In both direct- and indirect-fired supercritical CO 2 (sCO 2 ) cycles, there is considerable interest in increasing the size and efficiency of such systems, perhaps by increasing the peak temperature to >700°C. However, relatively little experimental data are available under these conditions with pressures of 200-300 bar. Furthermore, impurities such as O 2 and H 2 O in the CO 2 may greatly alter the compatibility of structural alloys in these environments. While an experimental rig is being constructed that can measure and control the impurity levels in sCO 2 at 200-300 bar, initial 1 bar experiments at 700°-800°C for 500 h have been conducted in high-purity and industrial grade CO 2 , CO 2 +0.15O 2 and CO 2 +10%H 2 O and compared to exposures in dry air and 200 bar sCO 2 . These results, focusing on Fe- and Ni-base structural alloys and commercial chromia- and alumina-forming alloys, indicate that modifications in the environment did not strongly affect the reaction products at 700°-800°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1417-1421, October 22–25, 2013,
... the initially formed protective Cr 2 O 3 scale facilitated gas permeation. This mechanism is believed to be responsible for the observed dependence of nodule formation on the oxygen content in the gas mixtures. carbon dioxide gas mixtures gas permeation high temperature oxidation intrinsic defects...
Abstract
View Paper
PDF
The high-temperature oxidation of Fe-9Cr-1Mo steel in a CO 2 environment, with varying oxygen content (0.6-3%), was investigated at 700°C. While the steel heavily oxidized in pure CO 2 , the oxidation mass gain decreased significantly with increasing oxygen content. Microscopic analysis revealed the formation of Fe-rich nodules with an internal Cr-carbide layer beneath them. Notably, the number of nodules decreased with increasing oxygen content but remained independent of the oxidation time. To explain these observations, the authors propose that “intrinsic” defects within the initially formed protective Cr 2 O 3 scale facilitated gas permeation. This mechanism is believed to be responsible for the observed dependence of nodule formation on the oxygen content in the gas mixtures.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 930-938, October 21–24, 2019,
... studies at ambient pressure. These results suggest that more studies of impurity effects are needed at supercritical pressures including steels at lower temperatures. alloy compatibility carbon dioxide impurity effects nickel alloys steel supercritical pressures Joint EPRI 123HiMAT...
Abstract
View Paper
PDF
Direct-fired supercritical CO 2 (sCO 2 ) cycles are expected to result in sCO 2 with higher impurity levels compared to indirect-fired cycles. Prior work at ambient pressure showed minimal effects of O 2 and H 2 O additions, however, a new experimental rig has been built to have flowing controlled impurity levels at supercritical pressures at ≤800°C. Based on industry input, the first experiment was conducted at 750°C/300 bar in CO 2 +1%O 2 -0.25%H 2 O using 500-h cycles for up to 5,000 h. Compared to research grade sCO 2 , the results indicate faster reaction rates for Fe-based alloys like 310HN and smaller increases for Ni-based alloys like alloys 617B and 282. It is difficult to quantify the 310HN rate increase because of scale spallation. Characterization of the 5,000 h specimens indicated a thicker reaction product formed, which has not been observed in previous impurity studies at ambient pressure. These results suggest that more studies of impurity effects are needed at supercritical pressures including steels at lower temperatures.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1004-1013, October 21–24, 2019,
... of the different alloy diffusion coefficients. Silicon additions slowed chromia scale growth, promoting passivation of both alloy types. Water vapour accelerated chromia scaling, but slowed NiO growth. attack resistance carbon dioxide diffusion coefficient iron-chromium alloys nickel-chromium alloys...
Abstract
View Paper
PDF
Model alloys of Fe-20Cr and Ni-20Cr (all compositions in weight %) and variants containing small amounts of Si or Mn were exposed to Ar-20CO 2 and Ar-20CO 2 -H 2 O (volume %) at 650 or 700°C. Protective Cr 2 O 3 scale was more readily formed on Fe-20Cr than Ni-20Cr, as a result of the different alloy diffusion coefficients. Silicon additions slowed chromia scale growth, promoting passivation of both alloy types. Water vapour accelerated chromia scaling, but slowed NiO growth.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 953-966, October 21–24, 2019,
... in supercritical CO 2 . The performance of these alloys indicates that these materials are compatible not only in oxidizing environments, but also in Supercritical CO 2 environments for extended service operation. alloy composition carbon dioxide high temperature alloys nickel-base alloys oxidation...
Abstract
View Paper
PDF
Long-term performance of high temperature alloys is critically linked to the oxidation behavior in power generation applications in wet air and steam. As power generation systems move towards higher efficiency operation, nextgeneration fossil, nuclear and concentrating solar power plants are considering supercritical CO 2 cycle above 700°C. Wrought solid solution strengthened and precipitations strengthened alloys are leading candidates for both steam and Supercritical CO 2 power cycles. This study evaluates the cyclic oxidation behavior of HAYNES 230, 282, and 625 alloys in wet air, flowing laboratory air, steam and in 1 and 300 bar Supercritical CO 2 at ~750°C for duration of 1000 -10,000h. Test samples were thermally cycled for various times at temperature followed by cooling to room temperature. Alloy performances were assessed by analyzing the weight change behavior and extent of attack. The results clearly demonstrated the effects of alloy composition and environment on the long-term cyclic oxidation resistance. The extents of attack varied from alloy to alloy but none of the alloys underwent catastrophic corrosion and no significant internal carburization was observed in supercritical CO 2 . The performance of these alloys indicates that these materials are compatible not only in oxidizing environments, but also in Supercritical CO 2 environments for extended service operation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 881-891, October 22–25, 2013,
... in energy generation. Carbon dioxide capture and storage (CCS) is considering as a feasible technology for reducing CO2 emissions while satisfying the ever-growing energy demands [1]. The most costeffective and readily available option is to mitigate CO2 emission by increasing the plant efficiency...
Abstract
View Paper
PDF
Oxyfuel combustion is considered as one of the most promising technologies to facilitate CO 2 capture from flue gases. In oxyfuel combustion, the fuel is burned in a mixture of oxygen and recirculated flue gas. Flue gas recirculation increases the levels of fireside CO 2 , SO 2 , Cl and moisture, and thus promotes fouling and corrosion. In this paper the corrosion performance of two superheater austenitic stainless steels (UNS S34710 and S31035) and one Ni base alloy (UNS N06617) has been determined in laboratory tests under simulated oxyfuel conditions with and without a synthetic carbonate based deposits (CaCO 3 - 15 wt% CaSO 4 , CaCO 3 - 14wt% CaSO 4 - 1 KCl) at 650 and 720°C up to 1000 hours. No carburization of the metal substrate was observed after exposure to simulated oxyfuel gas atmospheres without deposit, although some carbon enrichment was detected near the oxide metal interface. At 720°C a very thin oxide formed on all alloy surfaces while the weight changes were negative. This negative weight change observed is due to chromium evaporation in the moist testing condition. At the presence of deposits, corrosion accelerated and considerable metal loss of austenitic alloys was observed at 720°C. In addition, clear carburization of austenitic steel UNS S34710 occurred.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
.... air-firing combustion carbon dioxide carbonates coal-ash corrosion resistance coal-fired boilers corrosion rates corrosion test oxy-firing combustion reheaters superheaters weld overlays Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 255-267, August 31–September 3, 2010,
... or waste co-firing. In addition, to further reduce the carbon dioxide emissions, oxyfuel firing is also being considered. The ultrasupercritical boilers operating under these more arduous service conditions require higher performance tubing materials to operate reliabily. The creep properties...
Abstract
View Paper
PDF
This paper outlines a comprehensive UK-based research project (2007-2010) focused on developing fireside corrosion models for heat exchangers in ultra-supercritical plants. The study evaluates both conventional materials like T22 and advanced materials such as Super 304H, examining their behavior under various test environments with metal skin temperatures ranging from 425°C to 680°C. The research aims to generate high-quality data on corrosion behavior for materials used in both furnace and convection sections, ultimately producing reliable corrosion prediction models for boiler tube materials operating under demanding conditions. The project addresses some limitations of existing models for these new service conditions and provides a brief review of the fuels and test environments used in the program. Although modeling is still limited, preliminary results have been presented, focusing on predicting fireside corrosion rates for furnace walls, superheaters, and reheaters under various service environments. These environments include those created by oxyfuel operation, coal-biomass co-firing, and more traditional coal firing.
1