Skip Nav Destination
Close Modal
Search Results for
carbide precipitation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 283
Search Results for carbide precipitation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 888-899, October 11–14, 2016,
... pressurised by flowing CO 2 , inducing hoop stresses up to 35 MPa in the tube walls. Materials tested were Haynes alloys 188, 230 and 282, plus HR120 and HR160. These alloys developed chromia scales and, to different extents, an internal oxidation zone. In addition, chromium-rich carbides precipitated within...
Abstract
View Papertitled, Corrosion of Nickel-Base Alloys by Supercritical CO 2
View
PDF
for content titled, Corrosion of Nickel-Base Alloys by Supercritical CO 2
Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally pressurised by flowing CO 2 , inducing hoop stresses up to 35 MPa in the tube walls. Materials tested were Haynes alloys 188, 230 and 282, plus HR120 and HR160. These alloys developed chromia scales and, to different extents, an internal oxidation zone. In addition, chromium-rich carbides precipitated within the alloys. Air aging experiments enabled a distinction between carburisation reactions and carbide precipitation as a result of alloy equilibration. The stainless steel was much less resistant to CO 2 attack, rapidly entering breakaway corrosion, developing an external iron-rich oxide scale and internal carburisation. Results are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 479-487, October 21–24, 2019,
... Abstract In this work, the effects of phosphorus addition on the creep properties and microstructural changes of wrought γ’-strengthened Ni-based superalloys (Haynes 282) were investigated, focusing on the effects of carbides precipitation. In an alloy with a phosphorus content of 8 ppm...
Abstract
View Papertitled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
View
PDF
for content titled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
In this work, the effects of phosphorus addition on the creep properties and microstructural changes of wrought γ’-strengthened Ni-based superalloys (Haynes 282) were investigated, focusing on the effects of carbides precipitation. In an alloy with a phosphorus content of 8 ppm, precipitation of M 23 C 6 carbides was observed in both grain boundaries and the grain interior prior to the creep tests. Grain boundary coverage by carbide increased with phosphorus content up to approximately 30 ppm. On the other hand, the amount of M 23 C 6 in the grain interior decreased with phosphorus content. The results of the creep tests revealed the relationship between the time to rupture and the grain boundary coverage by carbides. The microstructure of the crept specimens showed the existence of misorientation at the vicinity of grain boundaries without carbides, as demonstrated via electron backscattered diffraction (EBSD) analysis. These results suggest that the observed improvement in the time to rupture is due to a grain-boundary precipitation strengthening mechanism caused by grain boundary carbides and that phosphorus content affects the precipitation behavior of M 23 C 6 carbides in the grain interior and grain boundaries. These behaviors were different between alloys with the single addition of phosphorus and alloys with the multiple addition of phosphorus and niobium.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 224-234, October 11–14, 2016,
... strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required...
Abstract
View Papertitled, Development of Ni-Base Superalloy USC141 for 700°C Class A-USC Boiler Tubes
View
PDF
for content titled, Development of Ni-Base Superalloy USC141 for 700°C Class A-USC Boiler Tubes
Recently, a γ’ precipitation strengthened Ni-base superalloy, USC141, was developed for 700°C class A-USC boiler tubes as well as turbine blades. In boiler tube application, the creep rupture strength of USC141 was much higher than that of Alloy617, and the 105 hours’ creep rupture strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required for tubes at around 700°C. It is known that coal ash corrosion resistance depends on the contents of Cr and Mo in Ni-base superalloys. Therefore the effect of Cr and Mo contents in USC141 on coal ash corrosion resistance, tensile properties, and creep rupture strengths were investigated. As a result, the modified USC141 containing not less than 23% Cr and not more than 7% Mo showed better hot corrosion resistance than the original USC141. This modified alloy also showed almost the same mechanical properties as the original one. Furthermore the trial production of the modified USC141 tubes is now in progress.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 283-294, October 11–14, 2016,
... with certain amount of Cu and also Nb and N for multiphase precipitation (MX, Cu-rich phase, NbCrN) strengthening in Fe-Cr-Ni austenitic matrix and M 23 C 6 carbide precipitation at grain boundaries. This SP2215 new austenitic steel is characterized by high stress-rupture strength (650°C, 105h>130MPa...
Abstract
View Papertitled, Research and Development of a New Austenitic Heat-Resisting Steel SP2215 for 600-620°C USC Boiler Superheater/Reheater Application
View
PDF
for content titled, Research and Development of a New Austenitic Heat-Resisting Steel SP2215 for 600-620°C USC Boiler Superheater/Reheater Application
For raising thermal efficiency and decreasing CO 2 emission, China had constructed the first 600°C ultra-supercritical(USC) fossil power plant in 2006. Now more than a hundred 600°C, 1000MW USC electric power units have been put in service. Recently, China has also developed 620°C USC power units and some of them have been put in service already. Meanwhile, more than fifty 620°C USC boilers will be produced by various China boiler companies. The austenitic steels TP347H, Super304H and HR3C are routinely used for 600°C USC boilers. Among these steels, a big amount of Super304H has been used for boiler superheater/reheater components application. However, Super304H is characterized by good stress-rupture strength but poor corrosion/oxidation resistance. On the other side, HR3C is characterized by very good corrosion/oxidation resistance but lower stress-rupture strength than Super304H. Now, the China 620°C USC project needs a new austenitic heat resisting steel with high stress-rupture strength and good corrosion/oxidation resistance to fulfill the superheater/reheater tube components application requirement. A new austenitic heat resisting steel SP2215 is based on 22Cr-15Ni with certain amount of Cu and also Nb and N for multiphase precipitation (MX, Cu-rich phase, NbCrN) strengthening in Fe-Cr-Ni austenitic matrix and M 23 C 6 carbide precipitation at grain boundaries. This SP2215 new austenitic steel is characterized by high stress-rupture strength (650°C, 105h>130MPa) and good corrosion/oxidation resistance. SP2215 austenitic steel has been commercially produced in tube product form. This SP2215 new austenitic heat-resisting steel is recommended to be used as superheater/reheater components for 620°C USC boiler application.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design. carbide precipitation cold working creep...
Abstract
View Papertitled, Creep and Creep Rupture Behavior of Nickel-Base Alloys for Superheaters After Cold Working
View
PDF
for content titled, Creep and Creep Rupture Behavior of Nickel-Base Alloys for Superheaters After Cold Working
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 373-385, August 31–September 3, 2010,
... with that of STD type, but ductility decreases dramatically. The material microstructure was observed in detail to find the ductility difference. Figure 4 shows the Z-contrast STEM images near the grain boundary of these materials. In the STD type, blocky carbides are precipitated on the grain boundary...
Abstract
View Papertitled, Low Thermal Expansion Ni-Base Superalloy for 700 C Class Steam Turbine Plant (USC141)
View
PDF
for content titled, Low Thermal Expansion Ni-Base Superalloy for 700 C Class Steam Turbine Plant (USC141)
Hitachi and Hitachi Metals have developed low thermal expansion Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141) for use as A-USC steam turbine material. The approximate 10 5 h creep rupture strength at 740° C is 100MPa, so USC141 can be expected to apply for blades and bolts. Now we have been studying to get better creep properties by microstructure controlling such as grain size or grain boundary morphology. In addition, the segregation test of USC141 shows good Freckle tendencies, it means that it would be easy to make a large ingot which could be used as rotors or pipes. From these calculation results, we have been tried to make an 850mmϕ ESR ingot of USC141.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 924-935, October 22–25, 2013,
... microscope. Microstructures of all specimens consist of phases resulting from hardening with various proportions of bainite and martensite. Carbide precipitates were found in all microstructures. The size of most of them did not exceed hundreds of nanometres. In some specimens (see below), preferential...
Abstract
View Papertitled, Creep Properties of Heat Affected Zone in Heterogeneous Welded Rotor
View
PDF
for content titled, Creep Properties of Heat Affected Zone in Heterogeneous Welded Rotor
Increasing demand on efficiency and power output of steam generators leads to new designs of welded rotors. The reason for rotor welding is the large size of rotors, which are difficult to produce in a single piece. Secondly, as there are varying operation conditions along the rotor length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties of a heterogeneous weld are subject of the investigation herein the current study, a heterogeneous weld of COST F and COST FB2 materials is investigated. The welding was performed by multi pass technique with overlaying welding beads that applied several heating cycles to heat affected zone. Metallographic investigation of the weld was performed and the weakest microstructure spots were detected. With the use of FEM simulation, appropriate heating/cooling cycles were obtained for the detected weak points. The temperature cycles obtained were subsequently applied to both base materials under laboratory conditions by induction heating. Creep properties of these materials were investigated. The influence of the initial base material’s grain size was also considered in the investigation. Two heating/cooling schedules were applied to both base materials with two grain sizes. Altogether, 8 different microstructures were examined in short term creep tests and the results were summarized.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 962-973, October 11–14, 2016,
... deformation is significant in this region, as indicated by the macro image which shows a relatively ductile failure. Precipitation behaviour during creep testing Four types of precipitates were investigated as part of this study: M23C6 carbide, Laves phase, fine MX particles and boron nitride (BN...
Abstract
View Papertitled, Microstructural Characterisation of Creep Tested 9Cr Welds for MarBN Steel
View
PDF
for content titled, Microstructural Characterisation of Creep Tested 9Cr Welds for MarBN Steel
Creep properties of 9Cr heat resistant steels can be improved by the addition of boron and nitrogen to produce martensitic boron-nitrogen strengthened steels (MarBN). The joining of this material is a crucial consideration in the material design since welds can introduce relatively weak points in the structural material. In the present study, creep tests of a number of MarBN weld filler metals have been carried out to determine the effect of chemistry on the creep life of weld metal. The creep life of the weld metals was analysed, and the evolution of creep damage was investigated. Significant differences in the rupture life during creep have been observed as a function of boron, nitrogen and molybdenum concentrations in the weld consumable composition. Although the creep lives differed, the particle size and number in the failed creep tested specimens were similar, which indicates that there is a possible critical point for MarBN weld filler metal creep failure.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 361-372, August 31–September 3, 2010,
... carbides during the double aging process Figure 9 (ac) show SEM images taken after solution treatment at 1140 °C for 10 h (ASTM G.S.No.-1) with cooling rate 95 °C/min, after first-step aging and after second-step aging, respectively. After the solution treatment, no precipitation was observed inside...
Abstract
View Papertitled, Effect of Grain Size on Mechanical Properties of Ni-Fe Base Superalloy for Advanced USC Turbine Rotor Materials
View
PDF
for content titled, Effect of Grain Size on Mechanical Properties of Ni-Fe Base Superalloy for Advanced USC Turbine Rotor Materials
The effect of grain size after solution treatment on the mechanical properties of FENIX-700, including its cooling rate, was investigated. In addition, the dependance of precipitation observed at grain boundaries on the heat treatment conditions was also discussed on the basis of the results of microstructure observations. It was confirmed that the tensile ductility, the creep rupture ductility, and the absorbed energy decreased as the grain size increased. The creep rupture strength, in contrast, increased remarkably as the grain size increased. The tensile strength increased as the cooling rate increased. Experimental results showed that satisfactory mechanical properties would be obtained for a grain size of ASTM G.S.No. 1.0-3.0.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 760-765, February 25–28, 2025,
.... These are M23C6 carbides that precipitated on the prior grain boundary before welding. The amount of M23C6 carbides precipitating on the grain boundary of the current lath martensitic structure in PWHT is clearly reduced due to the residual M23C6 carbides. The tendencies of the M23C6 carbide dispersion state...
Abstract
View Papertitled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
View
PDF
for content titled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
In this study, the creep strength of welded joints of Grade 91 Type 1 and Type 2 steels was evaluated. It was determined that impurity elements in the Type 1 steel reduced its creep strength. This reduction was attributed to an increase in the amount of residual carbides in the fine-grain heat-affected zone during welding.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
... precipitates of VC carbides. 1 µm Figure 9. Microstructure of the 12Cr2MoWVTiB steel showing VC carbides precipitated on dislocations within the ferrite grains; TEM. Usually, VC carbides are precipitated during tempering treatment. They favorably nucleate on the austenite microstructure defects (mainly...
Abstract
View Papertitled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
View
PDF
for content titled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 640-646, October 21–24, 2019,
... TP321H (18Cr-10Ni-Ti) have been widely used because of their good intergranular corrosion resistance [1-2]. However, TP321H and TP347H become very sensitive to PTA-SCC after the welding process due to the formation of the Cr-depleted zone by the precipitation of Cr-based M23C6 carbide along grain...
Abstract
View Papertitled, Effect of B Addition on Creep Strength of Low-C Austenitic Steels
View
PDF
for content titled, Effect of B Addition on Creep Strength of Low-C Austenitic Steels
Materials with a higher creep strength and sensitization resistance superior to those of 347AP are required in complex refinery such as delayed coker. To optimize material designing, the effect of B addition on the Z phase-strengthened steels has been investigated. B addition significantly improved the creep strength of steel containing Nb despite the absence of M 23 C 6 , whereas the creep strength of steel without Nb showed only a slight change with B addition. The size of Z phase was smaller in the Nb-containing steel with B content than that in B-free steel. It was suggested that the refinement of Z phase contributed to the creep strengthening by B addition in steels containing Nb.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability...
Abstract
View Papertitled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 592-602, October 21–24, 2019,
... than the current 600°C-level Ultra Super Critical (USC) plants [8]. One of the candidate materials, 47Ni-23Cr-23Fe-7W alloy (HR6W), exhibits excellent creep rupture strength even at 700°C by precipitation strengthening of Laves phase and M23C6 carbides. It also has high-temperature ductility...
Abstract
View Papertitled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
View
PDF
for content titled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
In order to establish a creep damage assessment method for 47Ni-23Cr-23Fe-7W (HR6W), which is a candidate material of A-USC, microstructure observation of creep interrupted specimens and ruptured specimen was conducted, and the creep damage process was examined. Creep tests were conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain boundaries from about 0.35 of creep life ratio, and crack ratio increased drastically after creep life ratio of 0.65. This crack ratio was almost the same regardless of the specimen shape Therefore, the method to assess crack ratio using replicas is considered to be an effective method for creep damage assessment of HR6W. An increase in the crack ratio due to an increase in creep life ratio showed the same trend as the change in elongation of creep interrupted specimens. Microstructure observations were conducted with interrupted specimens using SEM-ECCI (Electron Channeling Contrast Imaging) in order to clarify the cause of acceleration creep. The results showed that sub-boundary developed significantly near grain boundaries, which indicates that sub-boundary development may cause acceleration.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... of solution-annealed and aged treatment is shown in Figure 2. The morphologies of in the grain and M23C6 at grain boundary of alloy 740H are shown in Figure 3. Microstructure of the alloy indicates that carbides precipitated in the matrix and at grain boundaries. The particles distributed in the matrix...
Abstract
View Papertitled, Microstructure Evolution and <span class="search-highlight">Precipitates</span> Stability in Inconel Alloy 740H during Creep
View
PDF
for content titled, Microstructure Evolution and <span class="search-highlight">Precipitates</span> Stability in Inconel Alloy 740H during Creep
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 693-704, August 31–September 3, 2010,
..., which are identified as M23C6 on the basis of electron diffraction patterns, are observed at the martensite lath interfaces, grain boundaries and cell walls. There is also a high mobile dislocation density in most regions. The precipitated carbides sizes at martensite lath interfaces are relatively...
Abstract
View Papertitled, Microstructural Evolution of P92 Steel during Creep
View
PDF
for content titled, Microstructural Evolution of P92 Steel during Creep
In this paper, the microstructural evolution of P92 steel were studied in the viewpoint of degradation mechanism based on the creep rupture experiment results obtained at elevated temperature by means of macroscopic, metallographic, electronic microscope, energy spectrum, XRD and TEM examination. The results show that the decrease of mechanical properties of P92 steel is mainly due to the change of microstructure and the transformation of carbides, and there is definite relationship between microstructure evolution, mechanical properties and life loss of P92 steel. The results are beneficial to the further study of mechanism of high temperature creep rupture strength and microstructural evolution of heat-resistant steel. It also has important instructive significance to quantitative identification of scientific selection of materials.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 127-139, August 31–September 3, 2010,
..., and creep properties of seamless tubes and pipes after normalizing and tempering heat treatment are compared with those obtained after cold bending and hot induction bending. The creep resistance is obtained through the precipitation of fine carbides after tempering. A broad program of TEM investigations...
Abstract
View Papertitled, Long Term Properties and Microstructural Evolution of ASTM Grade 23
View
PDF
for content titled, Long Term Properties and Microstructural Evolution of ASTM Grade 23
ASTM Grade 23 is a 2.25Cr-0.3Mo-1.5W-V-Nb-B steel widely used for the fabrication of boiler components of the most recent ultra super critical power plants; it combines high creep resistance, enhanced oxidation and corrosion resistance and good weldability. Microstructural, mechanical, and creep properties of seamless tubes and pipes after normalizing and tempering heat treatment are compared with those obtained after cold bending and hot induction bending. The creep resistance is obtained through the precipitation of fine carbides after tempering. A broad program of TEM investigations on crept samples has been carried out in order to assess the evolution of the microstructure and its phases after long term high-temperature exposure, in terms of chemical composition, size and distribution of precipitates.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... fracture might occur because a grain was strengthened by precipitated carbides which are generated in the grain more than grain boundary. 359 Figure 5: Dark field image of Transmission election microscopy of NbC carbides. (a) As-received, (b) 10% pre-strained Unlike linear Hardness increases in accordance...
Abstract
View Papertitled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
View
PDF
for content titled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
... Ferritic) steel grades aiming at stabilization of martensitic microstructure by stable carbide precipitation [5]. The aim of the following paper is to increase the understanding of the mechanisms behind the enhanced steam oxidation and creep performance of the new steel grade. For this purpose, the steel s...
Abstract
View Papertitled, Super VM12—A New 12% Cr Boiler Steel
View
PDF
for content titled, Super VM12—A New 12% Cr Boiler Steel
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
.... Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based...
Abstract
View Papertitled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
1