Skip Nav Destination
Close Modal
Search Results for
butt welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 31 Search Results for
butt welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1232-1243, October 22–25, 2013,
.... butt welding creep test fractography gas metal arc welding martensitic stainless steel microscopic examinations pipe butt welds Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25, 2013, Waikoloa, Hawaii, USA httpsdoi.org...
Abstract
View Paper
PDF
Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using GTAW process combined with MMA processes. Progress in GMAW process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding procedure. The investigation also involved microscopic and fractographic examinations and creep tests. The results reveal that welding with GMAW is by no means inferior to a currently applied SMAW method yet the time of the process is shorter by 50%. The article presents the world’s first known positive results in welding of P92 grade steel using GMAW welding method.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... Abstract In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds...
Abstract
View Paper
PDF
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
... (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life...
Abstract
View Paper
PDF
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1182-1193, October 11–14, 2016,
...) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify...
Abstract
View Paper
PDF
There is a constant need for improved knowledge of the influence of non-standard processing on the expected performance of creep strength enhanced ferritic (CSEF) materials as the total installed tonnage of these materials is rapidly increasing across the power generation industry. Cr-Mo-V steel grades micro-alloyed with niobium and titanium designed for pressurized equipment operating in the supercritical steam range proved to be very sensitive to relative minor variations in the principal heat treatment parameters time and temperature, when compared to the traditional Cr-Mo-V grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance, it is therefore of significant importance to have a good understanding of actual material properties for effective operation and plant life studies. This study investigated the effect and impact variations of post weld heat treatment time and temperature on mechanical properties of tungsten inert gas (TIG) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify welds suspected to have received non-standard PWHT cycles on Grade 91 pipework systems.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 525-536, October 22–25, 2013,
... Abstract Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress...
Abstract
View Paper
PDF
Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress-corrosion cracking (SCC), and a lesser number of fabrication-related hydrogen induced cracking (HIC), weld solidification cracking, and brittle cracking within tube swage sections were also experienced. Hundreds of tubes were replaced prior to Unit commissioning, due to both actual tube leaks and those replaced due to weldment cracking and other identified weld defects during radiographic testing. Elevated stress levels and material susceptibility (i.e. hardness in the as-welded condition) were considered the critical factors in the tube cracking.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients. boilers environmental assisted cracking ferritic stainless steel heat affected zone microstructure oxygenated high-temperature water...
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1090-1097, October 21–24, 2019,
... Abstract In a European ultra-supercritical (USC) power station repaired reheater bundle tubes made out of 25% Chromium stainless steels developed stress relief damages at the tube-to-tube butt welds, leading to leakages after only 8.500 hours of operation. Laboratory investigations...
Abstract
View Paper
PDF
In a European ultra-supercritical (USC) power station repaired reheater bundle tubes made out of 25% Chromium stainless steels developed stress relief damages at the tube-to-tube butt welds, leading to leakages after only 8.500 hours of operation. Laboratory investigations of the leakages revealed common features of stress relief cracking (SRC) such as highly localized intergranular cracking in the heat affected zone (HAZ) near the fusion line, creep void formation at the crack tip and around the crack. At that time no other SRC damages were known for the employed 25% Chromium stainless steel boiler tubes. This article briefly describes the SRC damage found on the repaired reheater bundle tubes. It further provides insight on the several laboratory tests employed to assess the SRC behavior of welded joints of different creep resistant stainless steels. Among the selected test methods were Slow-Strain-Rate-Tests (SSRT), static 3-point bending tests derived from the Van Wortel approach and component tests. The results provided by the described tests methods have shown that the SRC behavior of a given material combination must be assessed by different techniques. This is especially the case for the evaluation of potential countermeasures and for the determination of the service conditions leading to the highest susceptibility.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
... of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory. boilers ferritic stainless steel light microscopy low-alloy steel membrane walls microstructure power plants scanning electron microscopy tempering transmission electron microscopy...
Abstract
View Paper
PDF
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1046-1057, October 11–14, 2016,
... material combinations in accordance with ASME Section I, ASME Section IX, and company internal requirements for tube and pipe girth butt welds using the gas tungsten arc welding, shielded metal arc welding, and submerged arc welding processes. The requirements of ASME Section II-D Mandatory Appendix 5 were...
Abstract
View Paper
PDF
A new martensitic steel was developed for power generation applications. Tenaris High Oxidation Resistance (Thor) is an evolution of Grade 91, designed to have improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and extensive development performed in the last decade, Thor was engineered to overcome temperature limitations of Grade 91, yet it can be processed in the same fashion, permitting the use of existing best practices for Grade 91 boiler fabrication. Welding trials were performed on Thor tubes and pipe using welding procedures that are routinely employed in the construction of Grade 91 steel components. A summary of relevant results is presented, demonstrating the applicability of long-established and tested welding procedures to components manufactured with Thor steel.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 537-548, October 22–25, 2013,
... without PWHT is too high. It can be reduced to HV250 after PWHT. Figure 2: The hardness of welded joints of T23 tube 3.5 Temper brittleness of butt welds of T23 tube The impact toughness of T23 tube s butt welds at different post weld heat treatments is shown in Fig.3. The result shows that the impact...
Abstract
View Paper
PDF
In this paper, the performance of T23 and 12Cr1MoVG water wall tubes as well as their welded joints in engineering applications is reported. It was found that the T23 water wall tube may have water leak problems during its operation. In order to make sure the safe operation, leakage reasons of T23 water wall tube were analyzed and improvement measures were taken. Recommendations on the choice of water wall material of 1000MW USC tower boiler are given.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 556-567, October 11–14, 2016,
... up to 4 years and then be replaced at the next major outage. This type of cold weld repair on P91 components utilising standard 9Cr1Mo SMAW electrodes could be applied to repair applications such as type IV cracking of pipe butt and branch joints plus weld build-up on header components due to steam...
Abstract
View Paper
PDF
The application of cold weld repair techniques in the power industry has been well documented. This type of repair is only considered when a conventional repair (involving post-weld heat treatment) is impracticable or the penalties of time and cost for conventional repair are sufficiently high. A typical cold weld repair in the UK has involved low alloy ferritic steel (½Cr½Mo¼V, 2¼Cr1Mo) components welded with nickel based SMAW consumables or ferritic FCAW consumables. Modified 9Cr steel components have been used in UK power plant since the late 1980’s for a number of applications, such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers, pipework and tubes. These repairs have been underwritten with extensive testing. This paper will describe the work performed on developing T91 cold weld repairs and where they have been applied on power plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 565-572, October 22–25, 2013,
.... To investigate secondary hardening, sections of welds were subjected to ageing heat treatments over a range of times and temperatures to determine the extent (if any) of secondary hardening. TEST PROGRAMME Several TIG butt welds were made in T24 tubing with matching filler to examine the potential of secondary...
Abstract
View Paper
PDF
T24 tube material (7CrMoVTiB10-10), with its combination of high creep strength and potential to be welded without using preheat, is regarded as a candidate waterwall material for Ultra Supercritical (USC) boilers. However, its reputed sensitivity to hydrogen and potential for secondary hardening may have adverse impacts on construction of waterwall panels. Doosan Babcock Ltd have investigated the response of welds made in T24 tubing to secondary hardening via changing hardness in a series of ageing heat treatment trials. Also, the response of the material to hydrogen infusion has been investigated
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
... media (and content) in the water chemistry that influences susceptibility to SCC. In Figure 3, an example of SCC is shown in a T23 waterwall panel tube to tube butt weld. In this image, it can be seen that cracking initiates from the root (ID, water touched surface) and in the coarse grained heat...
Abstract
View Paper
PDF
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 936-947, October 22–25, 2013,
... exceeded the required running time. 939 Figure 5: Creep rupture tests of P91 flux cored wire weld metal at 600°C (1112°F) Matching joint Grade 91 Table 4 shows the welding parameters for a 25 mm Grade 91 butt weld. Root and second pass have been welded with stick electrode and intermediate and final pass...
Abstract
View Paper
PDF
Flux cored wires are worldwide used in power generation industry due to their technical and economic advantages. For welding P91 and P92 flux cored wires with a rutile slag system are available for several years. Results of long-term investigations up to 30.000 h show that specimens of all weld metal meet the requirements of the base material. Following the recent demand of reduced Mn+Ni content the chemical composition of all weld metal has been modified. For P91 a matching flux cored wire with Mn+Ni<1wt% and for P92 with Mn+Ni<1.2wt% is now available. In this paper the mechanical properties of all weld metal and welded joints are being presented. Latest developments in cast materials have shown that the so-called CB2 (GX13CrMoCoVNbNB 10-1-1) enables steam temperatures up to 620°C (1148°F). Therefore a matching flux cored wire with low Ni-content has been developed. Results of welding procedure qualification and first experience of manufacturing industrial components show the successful implementation of this new material grade and welding consumable.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 992-1005, October 22–25, 2013,
... Instron 4210, provided with a computer-aided system of controlling and recording test results performed following the requirements of the standard ISO 4136. 995 Rm [MPa] RESULTS OF TENSILE TEST TEMPALOY AA-1 and T92 butt welded dissimilar joints 670 621 648 631 620 570 520 470 420 EPRI P87 IN82 Filler...
Abstract
View Paper
PDF
Dynamic development of steels used in power engineering industry for the production of boilers characterised by supercritical parameters poses new welding challenges. The introduction of new combinations of alloying agents aimed at obtaining the best possible mechanical properties, including creep resistance, affects the weldability of new steels. Each of the latter have to undergo many tests, particularly as regards bending and welding, in order to enable the development of technologies ensuring failure-free production and assembly of boiler systems. Martensitic steels containing 9% Cr, used in the manufacturing of steam superheaters, are characterised by good creep resistance and, at the same time, low oxidation resistance at a temperature in excess of 600°C. In turn, steels with a 12% Cr content are characterised by significantly higher oxidation resistance, but accompanied by lower strength at higher temperatures, which translates to their limited application in the production of boilers operating at the highest parameters. The niche between the aforesaid steels is perfectly filled by austenitic steels, the creep resistance and oxidation resistance of which are unquestionable. This article presents experience gained while welding dissimilar joints of advanced steels TEMPALOY AA-1 and T92, with the use of EPRI P87, Inconel 82 and Inconel 617 filler metals. The tests involving the said steel grades belong to the very few carried out in the world.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 60-70, October 21–24, 2019,
... 6082 EPRI P87 SPECIMEN Figure 1. Tensile strength of butt joint of tube ø50.8x10,1mm made of steel grade Thor 115 welded with different filler metals. RESULTS OF TENSILE TESTS AT ELEVATED TEMPERATURE The tests were carried out in order to determine the tensile strength (Rm) of a welded joint...
Abstract
View Paper
PDF
Development of steels used in the power generation industry for the production of boilers characterized by supercritical parameters poses new challenges. The introduction of new combinations of alloying agents aimed at obtaining the best possible mechanical properties, including creep resistance, affects the weldability of new steels. Each of the latter has to undergo many tests, particularly as regards bending and welding, in order to enable the development of technologies ensuring failure-free production and assembly of boiler systems. Martensitic steels containing 9% Cr, used in the manufacturing of steam superheaters, are characterized by excellent creep resistance and, at the same time, low oxidation resistance at a temperature in excess of 600°C. In turn, steels with a 12% Cr content, i.e., VM12-SHC or X20CrMoV12-1 are characterized by significantly higher oxidation resistance but accompanied by lower strength at higher temperatures, which translates to their limited application in the production of boilers operating at the most top parameters.X20CrMoV12-1 was withdrawn from most of the power plants, and VM12-SHC was supposed to replace it, but unfortunately, it failed in regards to creep properties. To fulfill the gap a new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris and it is designated as Thor115 (Tenaris High Oxidation Resistance). This paper covers the experience gained during the first steps of fabrication, which includes cold bending and welding of homogenous joints.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 53-59, October 22–25, 2013,
... of these are briefly mentioned below. Welding of Tubes and Plates Welding was carried out on tubes and plates using various processes like Gas Tungsten Arc Welding (GTAW), Hot Wire GTAW, semi-automated GTAW on Alloy 617M. The trials were successful and it was possible to get consistent quality of the butt welds in all...
Abstract
View Paper
PDF
India's current installed power generating capacity is about 225,000 MW, of which about 59% is coal based. It is projected that India would require an installed capacity of over 800,000 MW by 2032. Coal is likely to remain the predominant source of energy in India till the middle of the century. India is also committed to reducing the CO 2 emission intensity of its economy and has drawn up a National Action Plan for Climate Change, which, inter alia, lays emphasis on the deployment of clean coal technologies. With this backdrop, a National Mission for the Development of Advanced Ultra Supercritical Technology has been initiated. The Mission objectives include development of advanced high temperature materials, manufacturing technologies and design of equipment. A corrosion test loop in an existing plant is also proposed. Based on the technology developed, an 800 MW Demonstration A-USC plant will be established. Steam parameters of 310 kg/cm 2 , 710 °C / 720 °C have been selected. Work on selection of materials, manufacture of tubes, welding trials and design of components has been initiated. The paper gives details of India's A-USC program and the progress achieved.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 983-988, October 11–14, 2016,
... that the manufacturer should repair tube sections of header with a low hardness and butt welds with defects. Hydrogen induced delayed cracks generally emerge after a period of time upon the completion of welding. Timely post-heating treatment (hydrogen bake-out) before the emergence of cracks, if possible, may allow...
Abstract
View Paper
PDF
The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic and component sampling. By analyzing the results of on-site test and samples removed from the component, it is found that cracks existing in the welds are hydrogen induced delayed cracks. During the welding process and post-heating treatment (hydrogen bake-out), dehydrogenation was insufficient. This fact, combined with welding residual stresses resulted in the observed hydrogen induced cracking.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... susceptibility. The post weld heat treatment was not performed. After welding, high temperature strength properties were evaluated. 1008 Narrow gap HST welding was conducted for the butt welding in flat position successfully. Figure 4 shows the overall view of HR6W pipe after the welding. The non-destructive...
Abstract
View Paper
PDF
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1372-1387, October 22–25, 2013,
... and challenging with regard to understanding the material behavior for component integrity and life management. A recent failure in T23 material near a tube to tube butt weld in the roof tubing section of a supercritical boiler highlighted the need to characterize the response of weldments of this material...
Abstract
View Paper
PDF
The use of the bainitic creep strength enhanced ferritic steel T/P23 has increased over the last decade in a wide range of applications including headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in weldments of this material, such as hydrogen induced cracking, reheat cracking and stress corrosion cracking. In order to help characterize high temperature cracking phenomena, including reheat cracking, a limited number of laboratory creep crack growth tests are being conducted as part of an ongoing project. Tests were run on as-welded sections with the test specimen crack-tip located in select zones of the weldment. Test temperatures are intended to bookend the range of applications from a waterwall condition of ~482°C (900°F) to the superheat/reheat condition of 565°C (1050°F). This paper describes the results of some early testing at 482°C (900°F). The tests provided useful insight into the cracking susceptibility of the material at this temperature with respect to not only time-dependent cracking, but also fatigue crack growth and fracture toughness. The paper includes details of the test method and results, as well as findings from post-test metallographic examinations of the tested specimens.
1