Skip Nav Destination
Close Modal
Search Results for
alloy composition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 316 Search Results for
alloy composition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 765-776, October 22–25, 2013,
... steamside oxidation/exfoliation, but the efficacy of this technique is limited by the operating temperature. Nickel-based alloys exhibit very low oxidation/exfoliation rates, but have a propensity to form aluminum/titanium oxides along near surface grain boundaries. alloy composition A-USC boilers...
Abstract
View Paper
PDF
As part of the Boiler Materials for Ultrasupercritical Coal Power Plants program, sponsored by the United States (U.S.) Department of Energy (DOE) and the Ohio Coal Development Office (OCDO), the steamside oxidation and oxide exfoliation behavior of candidate alloys have been thoroughly evaluated in steam at temperatures between 620°C and 800°C (1148°F and 1472°F) for times up to 10,000 hours. The results from this test program indicate that the oxidation rates and oxide morphologies associated with steamside oxidation are a strong function of the crystallographic lattice structure and the chromium content of the material. Oxide exfoliation correlates to oxide thickness. The time required to reach the critical oxide thickness for exfoliation can be estimated based on oxidation kinetic relationships. For austenitic stainless steels, shot peening is effective in reducing steamside oxidation/exfoliation, but the efficacy of this technique is limited by the operating temperature. Nickel-based alloys exhibit very low oxidation/exfoliation rates, but have a propensity to form aluminum/titanium oxides along near surface grain boundaries.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 803-814, October 22–25, 2013,
... to understand the effect of varying Ni (9-12%) and Cr (16-20%) on steam oxidation resistance at 650°C. However, the model alloys generally showed superior oxidation resistance than commercial alloys of similar composition. Several surface engineering solutions also were investigated. The commercially favored...
Abstract
View Paper
PDF
Because of the problems experienced with steam-side oxide scale exfoliation in commercial power plants, there has been increased interest in understanding the steam oxidation resistance of 300- series stainless steels such as 347H and 304H. Model alloys were used in an attempt to understand the effect of varying Ni (9-12%) and Cr (16-20%) on steam oxidation resistance at 650°C. However, the model alloys generally showed superior oxidation resistance than commercial alloys of similar composition. Several surface engineering solutions also were investigated. The commercially favored solution is shot peening. Laboratory steam testing at 650°C found that annealing temperatures of ≥850°C eliminated the benefit of shot peening and a correlation was observed with starting hardness in the peened region. This effect of annealing has implications for the fabrication of shot peened tubing. Another route to improving oxidation resistance is the use of oxidation resistant diffusion coatings, which can be deposited inexpensively by a vapor slurry process. Uniform coatings were deposited on short tube sections and annealed at 1065°C to retain good 650°C creep properties. The coating was thicker than has been investigated in laboratory processes resulting in increased brittleness when the coating was assessed using 4-point bending.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 892-902, October 22–25, 2013,
.... In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures...
Abstract
View Paper
PDF
Using oxygen, rather than air, in coal-fired boilers has been studied for several years as a strategy to reduce NOx and concentrate CO 2 for capture. In combination with flue gas recirculation, higher levels of CO 2 are expected but increased H 2 O and SO 2 levels also may occur. In order to understand the role of substrate composition on corrosion, a combination of commercial and model alloys were investigated with synthetic coal ash and gas compositions simulating air- and oxyfiring environments. Exposure temperatures ranged from 600°-800°C to cover current operating temperatures up to advanced ultrasupercritical conditions. Using 500h exposures, no consistent negative effect was found for switching to the oxy-firing environment with the same synthetic ash. For model Fe-Cr alloys, 30%Cr was needed to form a thin protective reaction product across this temperature range. Among the commercial stainless steels, 310-type stainless steel showed low reaction rates with the maximum attack at 650°C. At higher temperatures, the depth of attack on Fe-base type 310 stainless steel was less than for Ni-base alloy 740. Initially, this difference was attributed to the Al and Ti additions in alloy 740. However, cast and hot rolled model Ni-18Cr and -22Cr alloys with various Al and Ti additions showed decreased metal loss with increasing Al and Ti additions in the oxy-firing environment at 700° and 800°C. As expected, metal loss was very sensitive to Cr content. A second set of model alloys also examined the effect of Co and Mo.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 213-223, October 11–14, 2016,
... induce the formation of δ and η phases. The morphology, formation, and composition of precipitate phases in a number of experimental alloys spanning a broad range of compositions were explored to devise compositional relationships that can be used to predict the microstructural phase stability...
Abstract
View Paper
PDF
Modern polycrystalline Ni-base superalloys for advanced gas turbine engines have been a key component that has contributed to technological advances in propulsion and power generation. As advanced turbine engine designs are beginning to necessitate the use of materials with temperature and strength capabilities beyond those exhibited by existing materials, new alloying concepts are required to replace conventional Ni-base superalloys with conventional γ-γ’ microstructures. The phase stability of various high Nb content Ni-base superalloys exhibiting γ-γ’-δ -η microstructures have been the subject of a number of recent investigations due to their promising physical and mechanical properties at elevated temperatures. Although high overall alloying levels of Nb, Ta and Ti are desirable for promoting high temperature strength in γ-γ’ Ni-base superalloys, excessive levels of these elements induce the formation of δ and η phases. The morphology, formation, and composition of precipitate phases in a number of experimental alloys spanning a broad range of compositions were explored to devise compositional relationships that can be used to predict the microstructural phase stability and facilitate the design of Ni-base superalloys.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 388-402, October 25–28, 2004,
... Abstract This study investigates the growth kinetics and spallation behavior of oxide scales formed under steam environments on alloys used in high-temperature plants. The influence of alloy composition is analyzed using two approaches: an empirical model based on the concept of “chromium...
Abstract
View Paper
PDF
This study investigates the growth kinetics and spallation behavior of oxide scales formed under steam environments on alloys used in high-temperature plants. The influence of alloy composition is analyzed using two approaches: an empirical model based on the concept of “chromium equivalent” and a neural network model. Both models demonstrate a good correlation with experimental results when sufficient data is available to generate the model parameters. However, there is insufficient data on scale spallation to develop similar models describing the influence of alloy composition on this phenomenon.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 791-802, October 22–25, 2013,
... of surface finish at the early stages of oxidation. Oxides formed on cold worked surfaces were more adherent and much thinner than on a spark eroded and ground surface. This effect was stronger than the influence of temperature or alloy composition within the tested ranges. austenitic stainless steel...
Abstract
View Paper
PDF
To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters and reheaters. Apart from the chemical composition of the material, surface condition is a major factor affecting the oxidation resistance in steam and supercritical water. In this paper, stainless boiler steels (UNS S34710, S31035, S31042, and S30942) are investigated for oxidation resistance in flowing supercritical water. Tests were conducted in an autoclave environment (250 bar, with 125 ppb dissolved oxygen and a pH of 7) at 625°C, 650°C and 675°C for up to 1000 h. Materials were tested with as-delivered, shot peened, milled or spark eroded and ground surface finish. The results show a strong influence of surface finish at the early stages of oxidation. Oxides formed on cold worked surfaces were more adherent and much thinner than on a spark eroded and ground surface. This effect was stronger than the influence of temperature or alloy composition within the tested ranges.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 274-290, October 25–28, 2004,
... strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status...
Abstract
View Paper
PDF
The power generation industry worldwide aims to develop coal-fired boilers operating at much higher efficiencies than current supercritical plants. This increased efficiency is expected through ultrasupercritical steam conditions, requiring new materials for critical components. To limit the use of expensive alloying materials, it is necessary to maximize the strength and corrosion capabilities across the material spectrum from ferritic to austenitic and nickel-based alloys. Sandvik Materials Technology has developed an austenitic alloy, Sanicro 25, with excellent high-temperature strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status, and properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 971-975, October 21–24, 2019,
... requires sufficient ductility at high temperatures. This is achieved by additions of -stabilizing elements to the alloy composition, such as Nb, Cr and V [1]. One of the main challenges to wide-scale application of TiAl intermetallics as turbine blade materials is their poor oxidation resistance at high...
Abstract
View Paper
PDF
The competitive effect of Nb and V additions on the high-temperature oxidation behavior of Ti- 30Al alloys were studied at 800°C in air. Oxidation performance increased with increasing Nb content, however, V additions eliminated the beneficial effect of Nb on oxidation performance, causing higher oxidation mass gains. In-situ high-temperature XRD by means of synchrotron source suggested dissolution of Nb 5+ but lower valence of vanadium ions in the TiO 2 oxide scale during oxidation. Dissolution of Nb and V ions with different valence in TiO 2 during oxidation could cause the beneficial and detrimental effects observed on the performance of high-temperature oxidation of Ti-30Al.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up...
Abstract
View Paper
PDF
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 953-966, October 21–24, 2019,
... and extent of attack. The results clearly demonstrated the effects of alloy composition and environment on the long-term cyclic oxidation resistance. The extents of attack varied from alloy to alloy but none of the alloys underwent catastrophic corrosion and no significant internal carburization was observed...
Abstract
View Paper
PDF
Long-term performance of high temperature alloys is critically linked to the oxidation behavior in power generation applications in wet air and steam. As power generation systems move towards higher efficiency operation, nextgeneration fossil, nuclear and concentrating solar power plants are considering supercritical CO 2 cycle above 700°C. Wrought solid solution strengthened and precipitations strengthened alloys are leading candidates for both steam and Supercritical CO 2 power cycles. This study evaluates the cyclic oxidation behavior of HAYNES 230, 282, and 625 alloys in wet air, flowing laboratory air, steam and in 1 and 300 bar Supercritical CO 2 at ~750°C for duration of 1000 -10,000h. Test samples were thermally cycled for various times at temperature followed by cooling to room temperature. Alloy performances were assessed by analyzing the weight change behavior and extent of attack. The results clearly demonstrated the effects of alloy composition and environment on the long-term cyclic oxidation resistance. The extents of attack varied from alloy to alloy but none of the alloys underwent catastrophic corrosion and no significant internal carburization was observed in supercritical CO 2 . The performance of these alloys indicates that these materials are compatible not only in oxidizing environments, but also in Supercritical CO 2 environments for extended service operation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
... of the modified alloys. Alloy Development Starting with a baseline of NIMONIC 263, a rigorous Design of Experiments study utilizing Thermo-Calc was conducted [2]. The goal was to maximize the fraction of precipitates after hot working and heat treatment. After studying 32 possible alloy compositions, three...
Abstract
View Paper
PDF
By utilizing computational thermodynamics in a Design of Experiments approach, it was possible to design and manufacture nickel-base superalloys that are strengthened by the eta phase (Ni3Ti), and that contain no gamma prime (Ni3Al,Ti). The compositions are similar to NIMONIC 263, and should be cost-effective, and have more stable microstructures. By varying the aging temperature, the precipitates took on either cellular or Widmanstätten morphologies. The Widmanstätten-based microstructure is thermally stable at high temperatures, and was found to have superior ductility, so development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
.... Based on this consideration, the present authors proposed a new alloy design with a base alloy composition of Fe-30Cr-3Al-0.2Si-(0-2)Nb in weight percent [13]. Better oxidation and corrosion resistance are expected by the combination of high Cr + Al + Nb contents based on previous alumina-forming...
Abstract
View Paper
PDF
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 678-689, October 11–14, 2016,
... by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher...
Abstract
View Paper
PDF
Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher creep rupture strength and better oxidation resistance than conventional high Cr ferritic steels and austenitic steels. The 2 ton ESR ingot was forged or hot rolled without defects, and the blade trial manufacturing was successfully done. This alloy is one of the best candidates for USC and A-USC turbine components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused...
Abstract
View Paper
PDF
MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused not only by the continuity of Mo solid solution in solidification microstructure but also by TiC phase affecting as a fracture-resistant phase. In order to understand the microstructure evolution during solidification and the effect of TiC phase on the fracture toughness of the MoSiBTiC alloy, Mo-Ti-C ternary model alloys are dealt with in this study. Then, (1) liquidus surface projection and (2) isothermal section and the elastic moduli of TiC phase in equilibrium with Mo solid solution were focused on. The obtained liquidus surface projection suggests that the ternary transition peritectic reaction (L+ Mo 2 C->Mo+TiC) takes place in Mo-rich region. At 1800 °C, TiC phase in equilibrium with Mo phase contains at least 20.2 at% Mo and the Mo/TiC/Mo 2 C three phase region should exist around Mo-15Ti-10C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 371-381, October 22–25, 2013,
... nucleation [5], and Mo is an effective element in impeding SRZ formation [4]. However, these effects have been observed from various multicomponent Ni-based superalloys, with complex alloy compositions, and are not always consistent across alloy systems. Some alloying elements, such as Co shows clear effects...
Abstract
View Paper
PDF
Coatings are an essential part of the materials system to protect the turbine blades from oxidation and corrosive attack during service. Inter-diffusion of alloying elements between a turbine blade substrate and their coatings is a potential concern for coated turbine blades at ever increasing operating temperatures because this can cause the formation of undesirable Secondary Reaction Zones (SRZs), which may degrade the mechanical properties of coated Ni-based superalloys. Understanding the effects of each element on the SRZ formation is essential in order to understand both the mechanism and inter-diffusion behaviour between coatings and substrates. In this research, a number of simpler aluminized ternary Ni-Al-X (where X is Co, Cr, Re, Ru or Ta) alloys were investigated in order to elucidate the separate effects of each element on the microstructural evolution, especially at the coating/substrate interface. The aluminized ternary alloys developed distinctive diffusion zones, depending on the third alloy element, ‘X’. Specifically, it has been found that both Ni-Al-Re and Ni-Al-Ta alloys developed a continuous SRZ-like diffusion layer. This diffusion zone persisted in the Ni-Al-Re alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1193-1203, October 21–24, 2019,
... Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy...
Abstract
View Paper
PDF
Research and development of 700°C A-USC steam turbine unit needs to be supported by materials with excellent overall performance. Waspaloy is a kind of γ′ phase precipitation hardening superalloy developed by the United States in the 1950s. In the 700°C R&D Plan of Shanghai Turbine Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully meet the requirements of high-temperature blades and bolts of 700°C A-USC unit. It shows that the 700°C A-USC unit high temperature blades and bolts were successfully developed by Shanghai Turbine Plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1341-1351, October 22–25, 2013,
... properties of Fe/Ni weld joints with different compositions. Investigation of thermally aged Fe/Ni diffusion couples revealed that Fe-based ferritic steel and Alloy 617 weld joints with a large difference in Cr content showed strong C diffusion at the weld interface. This decreased the creep rupture life...
Abstract
View Paper
PDF
In order to develop an Fe/Ni dissimilar-weld rotor structure for an Advanced Ultra Super Critical turbine, fundamental studies on the metallurgical properties of Fe/Ni welds are needed. In the work reported in this paper, we studied the microstructure evolution and creep rupture properties of Fe/Ni weld joints with different compositions. Investigation of thermally aged Fe/Ni diffusion couples revealed that Fe-based ferritic steel and Alloy 617 weld joints with a large difference in Cr content showed strong C diffusion at the weld interface. This decreased the creep rupture life of the weld joint, caused by coarsening of a martensitic structure near the interface. Analysis using Fe/Ni diffusion couples and thermodynamic calculations suggested that the driving force of C diffusion is the chemical potential gradient at the interface, and the difference in Cr content between Fe and Ni accelerates the C diffusion.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
..., together with improved high-temperature creep performance through precipitation strengthening [9-11]. Modification of the alloy composition was pursued to increase the amount of Laves phase precipitates, and Fe-30Cr-3Al-1Nb-6W-0.2Si base alloys, strengthened by Fe2(Nb,W)-type Laves phase, were proposed...
Abstract
View Paper
PDF
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 998-1003, October 21–24, 2019,
... and corrosion products. Then, the results were compared with those obtained from testing in research-grade CO2. MATERIALS AND EXPERIMENT Test Materials and Specimen Preparation Stainless steel 316LN, Alloy 800HT and Alloy 600 were used in this study. The chemical compositions of the alloys were analyzed...
Abstract
View Paper
PDF
The effect of gas impurities on corrosion behavior of candidate Fe- and Ni-base alloys (SS 316LN, Alloy 800HT, Alloy 600) in high temperature CO 2 environment was investigated in consideration of actual S-CO 2 cycle applications. Preliminary testing in research and industrial grade S-CO 2 at 600 °C (20 MPa) for 1000 h showed that oxidation rates were significantly reduced in industrial-grade S-CO 2 environment. Meanwhile, controlled tests with individual impurity additions such as CH 4 , CO, and O 2 in research-grade CO 2 were performed. The results indicated that CH 4 and CO additions did not seem to significantly affect oxidation rates. On the other hand, O 2 addition resulted in lower weight gains for all alloys, suggesting that O 2 may be primarily affecting corrosion behavior.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
... and sigma phase. The stability range of sigma is starting from approx. 580 °C (1076°F) to 1050 °C (1922 °F), with a middle alloy composition shown in table 2. Figure 1: Thermocalc calculation of phases, stable in Power austenite, with composition limits as shown in table 1 305 Table 1: Composition of Power...
Abstract
View Paper
PDF
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
1