Skip Nav Destination
Close Modal
Search Results for
aging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 327
Search Results for aging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 433-440, October 21–24, 2019,
... superalloys could be classified into the above two processes based on their volume fraction and lattice misfit. The coarsening of γ′ precipitates follow the aggregation process when the misfit is smaller than 0.05%, and it follows the localization process otherwise. aggregation isothermal aging...
Abstract
View Papertitled, Microstructure Evolution during Isothermal <span class="search-highlight">Aging</span> of Multimodal Ni-Based Superalloys
View
PDF
for content titled, Microstructure Evolution during Isothermal <span class="search-highlight">Aging</span> of Multimodal Ni-Based Superalloys
The morphological evolution of secondary γ′ precipitates under the coarsening process was investigated for commercial wrought Ni-based superalloys, which can be classified into two processes, i.e. “localization process” and “aggregation process”. The localization process was defined as a phenomenon in which cuboidal γ′ precipitates were arranged in the <100> direction for superalloys. In contrast, the aggregation process was defined as a phenomenon in which neighboring spherical γ′ precipitates coarsen while overlapping their interfaces for superalloys. All the wrought Ni-based superalloys could be classified into the above two processes based on their volume fraction and lattice misfit. The coarsening of γ′ precipitates follow the aggregation process when the misfit is smaller than 0.05%, and it follows the localization process otherwise.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 448-459, October 21–24, 2019,
... suggested to have an extra aging treatment at 800 °C for 16 h, in order to obtain homogeneous γ′ precipitates. In this present work, creep tests and microstructure analyses were conducted on Inconel 740H pipe specimens under two different heat treatments to verify the necessity of aging process. Here we...
Abstract
View Papertitled, Effect of <span class="search-highlight">Aging</span> Heat-Treatment on the Creep Behavior of Inconel 740H Used in 700 °C A-USC Power Plants
View
PDF
for content titled, Effect of <span class="search-highlight">Aging</span> Heat-Treatment on the Creep Behavior of Inconel 740H Used in 700 °C A-USC Power Plants
Inconel 740H is one of the most promising candidate Ni-base superalloys for the main steam pipe of 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. After processing and welding in manufacturing plant in solution-annealed state, large components was commonly suggested to have an extra aging treatment at 800 °C for 16 h, in order to obtain homogeneous γ′ precipitates. In this present work, creep tests and microstructure analyses were conducted on Inconel 740H pipe specimens under two different heat treatments to verify the necessity of aging process. Here we show that aging treatment has limited effect on the creep rupture life of Inconel 740H pipe. Both in grain interiors and along grain boundaries, crept specimens under two different heat treatments have the same precipitates. But the shape and distribution of γ′ in solution annealed sample is not as regular as the aged ones. Our results provide the underlying insight that aging treatment is not so necessary for the straight pipes if the on-site condition was hard to control. But for both groups of specimens, a small amount of h particles and some banded like M 23 C 6 were emerged during creep, which would be harmful to mechanical properties for the long run.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
... Abstract Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied...
Abstract
View Papertitled, An Economical 1-Step <span class="search-highlight">Aging</span> Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
View
PDF
for content titled, An Economical 1-Step <span class="search-highlight">Aging</span> Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly...
Abstract
View Papertitled, Study on GTAW Welded Joint of Nimonic 263 Alloy after <span class="search-highlight">Aging</span> at 750℃ for Gas Turbine Transition Pieces
View
PDF
for content titled, Study on GTAW Welded Joint of Nimonic 263 Alloy after <span class="search-highlight">Aging</span> at 750℃ for Gas Turbine Transition Pieces
Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
... Abstract In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours...
Abstract
View Papertitled, Effect of Thermal <span class="search-highlight">Aging</span> Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
View
PDF
for content titled, Effect of Thermal <span class="search-highlight">Aging</span> Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-V Weld Metal
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1314-1321, October 21–24, 2019,
... material deterioration by aging. The study presented in this paper involves micro structural evolution by thermal aging of COST-E, F, and FB2 steels, all turbine materials. The results indicate that the Laves phases and other precipitates can be separately detected and quantified by the electrochemical...
Abstract
View Papertitled, Changes in Electrochemical Polarization Characteristics of High Chromium Steels by Thermal <span class="search-highlight">Aging</span> Treatment
View
PDF
for content titled, Changes in Electrochemical Polarization Characteristics of High Chromium Steels by Thermal <span class="search-highlight">Aging</span> Treatment
The nucleation and growth of precipitates such as Laves phases, carbides and nitrides reduce fracture toughness and high-temperature strength of high chromium steels used in thermal power plants. For this reason, to ensure a long-term plant reliability, it is important to estimate material deterioration by aging. The study presented in this paper involves micro structural evolution by thermal aging of COST-E, F, and FB2 steels, all turbine materials. The results indicate that the Laves phases and other precipitates can be separately detected and quantified by the electrochemical technique. The results also clarify the correlation between the amount of Laves phases precipitated and electrochemical polarization parameters.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1170-1181, October 11–14, 2016,
... of the creep strength of the weld metal is increasing. In this study, the change in hardness with aging and creep strength before and after aging were evaluated to determine the creep strength of the weld metal of Gr.91. The hardness of the weld metal subjected to aging significantly decreased compared...
Abstract
View Papertitled, Effect of <span class="search-highlight">Aging</span> on Creep Strength of Grade 91 Steel Weld Metal
View
PDF
for content titled, Effect of <span class="search-highlight">Aging</span> on Creep Strength of Grade 91 Steel Weld Metal
Type IV damage is observed in creep-strength-enhanced ferritic (CSEF) steel used in USC plants and the research on the evaluation of such damage has been carried out in the world. Type I failure is recently reported in welded joint of Gr.91 so that the importance of the evaluation of the creep strength of the weld metal is increasing. In this study, the change in hardness with aging and creep strength before and after aging were evaluated to determine the creep strength of the weld metal of Gr.91. The hardness of the weld metal subjected to aging significantly decreased compared with that of the base metal and the heat-affected zone (HAZ). The creep strength of the weld metal was also decreased by aging. From these results, it is suggested that the failure morphology of Gr.91 steel welded joint used for a long term may change from type IV to type I.
Proceedings Papers
The Effect of Service Aging on the Creep-Fatigue Properties of Alloy 617 Parent Metal and Welds
Free
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 571-583, August 31–September 3, 2010,
... evaluated the fatigue and creep-fatigue performance of Alloy 617, including both parent metal and welds, at 650 °C (1202 °F). Tests were conducted on virgin material, service-aged samples (up to 25,000 hours), and material over-aged at 800 °C (1472 °F) for 1,000 hours. Results indicated that service aging...
Abstract
View Papertitled, The Effect of Service <span class="search-highlight">Aging</span> on the Creep-Fatigue Properties of Alloy 617 Parent Metal and Welds
View
PDF
for content titled, The Effect of Service <span class="search-highlight">Aging</span> on the Creep-Fatigue Properties of Alloy 617 Parent Metal and Welds
To enhance power plant efficiency, global projects aim to increase operating temperatures to 700 °C (1292 °F) and beyond, surpassing the capabilities of conventional ferritic and austenitic steel alloys and necessitating the use of nickel-based alloys like Alloy 617. This study evaluated the fatigue and creep-fatigue performance of Alloy 617, including both parent metal and welds, at 650 °C (1202 °F). Tests were conducted on virgin material, service-aged samples (up to 25,000 hours), and material over-aged at 800 °C (1472 °F) for 1,000 hours. Results indicated that service aging only slightly reduced the pure fatigue properties of Alloy 617, but significantly decreased its life under creep-fatigue conditions. The creep-fatigue life of ex-service welds was reduced to less than one-third of that of virgin parent metal. The data suggests that the introduction of a tensile hold period impacts Alloy 617's life more than Alloy 263 but less than Alloy 740, potentially linked to the cyclic strength of the alloys. The reduction in life for Alloy 617 is notably greater than that observed in conventional ferritic alloys.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 516-529, August 31–September 3, 2010,
... Abstract In this paper we tried to model the creep-strength degradation of selected advanced creep resistant steels which occurs under operating conditions. In order to accelerate some microstructure changes and thus to simulate degradation processes in long-term service, isothermal ageing...
Abstract
View Papertitled, Creep Behavior of Advanced Power Plant Steels after Long-Term Isothermal <span class="search-highlight">Ageing</span>
View
PDF
for content titled, Creep Behavior of Advanced Power Plant Steels after Long-Term Isothermal <span class="search-highlight">Ageing</span>
In this paper we tried to model the creep-strength degradation of selected advanced creep resistant steels which occurs under operating conditions. In order to accelerate some microstructure changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650°C for 10 000 h was applied to P91, P92 and P23 steels in their as- received states. The tensile creep tests were performed at temperature 600°C in argon atmosphere on all steels both in the as-received state and after isothermal ageing, in an effort to obtain a more complete description of the role of microstructure stability in high temperature creep of these steels. Creep tests were followed by microstructure investigations by means of transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the creep tests was verified by the theoretical modelling of the phase equilibrium at different temperatures. It is suggested that under restricted oxidation due to argon atmosphere microstructure instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 703-714, October 21–24, 2019,
... Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31399/asm.cp.am-epri-2019p0703 Copyright © 2019 ASM International® All rights reserved. www.asminternational.org CHARACTERISATION OF THE MICROSTRUCTURAL EVOLUTION OF AGED SUPER 304H (UNS30432...
Abstract
View Papertitled, Characterization of the Microstructural Evolution of <span class="search-highlight">Aged</span> Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
View
PDF
for content titled, Characterization of the Microstructural Evolution of <span class="search-highlight">Aged</span> Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes as this will help researchers understand the long-term microstructural evolution and degradation of the material, which can impact the performance and lifetime of the components that are in service. In this research, the microstructure of an ex-service Super 304H reheater tube that has been in service for 99,000 hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX carbonitrides rich in niobium, copper-rich particles, M 23 C 6 , sigma phase, Z phase, a cored phase, and a BCC phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
... a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were...
Abstract
View Papertitled, Characterization of Suitable Fillers for Butt Weld of Creep <span class="search-highlight">Aged</span> X20 and Virgin P91 Pipes
View
PDF
for content titled, Characterization of Suitable Fillers for Butt Weld of Creep <span class="search-highlight">Aged</span> X20 and Virgin P91 Pipes
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1340-1350, October 21–24, 2019,
... Abstract The present study presents a detailed investigation on the evolution of the microstructure during welding on virgin and long-term service exposed (creep aged 1 = 535°C; 16.1 MPa; 156 kh and creep aged 2 = 555°C; 17.0 MPa; 130 kh) 12% Cr (X20CrMoV11-1) martensitic steel. This study...
Abstract
View Papertitled, Microstructural Evolution of a Creep <span class="search-highlight">Aged</span> Tempered Martensitic Ferritic Steel during Welding
View
PDF
for content titled, Microstructural Evolution of a Creep <span class="search-highlight">Aged</span> Tempered Martensitic Ferritic Steel during Welding
The present study presents a detailed investigation on the evolution of the microstructure during welding on virgin and long-term service exposed (creep aged 1 = 535°C; 16.1 MPa; 156 kh and creep aged 2 = 555°C; 17.0 MPa; 130 kh) 12% Cr (X20CrMoV11-1) martensitic steel. This study was carried out in order to understand the impact of welding on prior creep exposed Tempered martensite ferritic (TMF) steel and to explain the preferential failure of weldments in the fine grained heat affected zone (FGHAZ) of the creep aged material side instead of the new material side. Gleeble simulation (Tp = 980°C; heating rate = 200 °C/s; holding time = 4 seconds) of the FGHAZ was performed on the materials to create homogeneous microstructures for the investigation. Quantitative microstructural investigations were conducted on the parent plate and simulated FGHAZ materials using advanced electron microscopy to quantify: a) voids, b) dislocation density, c) sub-grains, and d) precipitates (M 23 C 6 , MX, Laves, Z-phase) in the materials. Semi-automated image analysis was performed using the image analysis software MIPARTM. The pre-existing creep voids in the creep aged parent material and the large M 23 C 6 carbides (Ø > 300 nm) in the FGHAZ after welding are proposed as the main microstructural contributions that could accelerate Type IV failure on the creep aged side of TMF steel weldments.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 29-45, October 3–5, 2007,
... Power Research Institute Distributed by ASM International®. All rights reserved. www.asminternational.org httpsdoi.org/10.31399/asm.cp.am-epri-2007p0029 Refurbishment of Aged PC Power Plants with Advanced USC Technology Masafumi Fukuda* Hideyuki Sone ** Eiji Saito Yoshinori Tanaka Takeo Takahashi Akira...
Abstract
View Papertitled, Refurbishment of <span class="search-highlight">Aged</span> PC Power Plants with Advanced USC Technology
View
PDF
for content titled, Refurbishment of <span class="search-highlight">Aged</span> PC Power Plants with Advanced USC Technology
The capacity of PC power plants in Japan rose to 35GW in 2004. The most current plants have a 600 deg-C class steam temperature and a net thermal efficiency of approximately 42% (HHV). Older plants, which were built in the ‘70s and early ‘80s, will reach the point where they will need to be rebuilt or refurbished in the near future. The steam temperatures of the older plants are 538 deg-C or 566 deg-C. We have done a case study on the refurbishment of one of these plants with the advanced USC technology that uses a 700 deg-C class steam temperature in order to increase the thermal efficiency and to reduce CO 2 emissions. The model plant studied for refurbishing has a 24.1MPa/538 deg-C /538 deg-C steam condition. We studied three possible systems for the refurbishing. The first was a double reheat system with 35MPa/700 deg-C /720 deg-C /720 deg-C steam conditions, the second one was a single reheat 25MPa/700 deg-C/720 deg-C system, the last one was a single reheat 24.1MPa/610 deg-C/720 deg-C system. In addition to these, the most current technology system with 600 deg-C main and reheat temperatures was studied for comparison. The study showed that the advanced USC Technology is suitable for refurbishing old plants. It is economical and environmentally-friendly because it can reuse many of the parts from the old plants and the thermal efficiency is much higher than the current 600 deg-C plants. Therefore, CO 2 reduction is achieved economically through refurbishment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 635-649, February 25–28, 2025,
..., 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0635 Copyright © 2024 ASM International® All rights reserved. www.asminternational.org UNDERSTANDING THE KINETICS OF SIGMA PHASE EVOLUTION IN SUPER 304H USING LAB CREEP TESTED HEATS AND LONG-TERM SERVICE AGED COMPONENTS T...
Abstract
View Papertitled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term Service <span class="search-highlight">Aged</span> Components
View
PDF
for content titled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term Service <span class="search-highlight">Aged</span> Components
Super 304H is a new generation of advanced austenitic stainless steels that is increasingly being used in superheater/ reheater (SH/RH) sections of thermal ultra-supercritical steam power plants due to its high creep strength combined with good oxidation resistance and microstructure stability. However, recent studies have shown significant microstructural changes and associated degradation in creep performance during long-term service exposure in this alloy. Microstructure evolution during service and its effect on the long-term creep performance has not been comprehensively assessed. In this work, variations in the microstructure of long-term service exposed Super 304H RH tubes (~99,600 hours at 596°C steam temperature) are documented. The results for the ex-service material are compared to well-documented laboratory studies to provide perspective on improved life management practices for this mainstay advanced stainless steel.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... MATERIAL AND DESIGN ASPECTS FOR MODERN STEAM POWER PLANTS Torsten-Ulf Kern, Henning Almstedt Siemens AG, Power and Gas Division, Steam Turbines D-45478 Muelheim an der Ruhr, Germany ABSTRACT There are main drivers for the design and assessment of steam turbine components of today such as demands...
Abstract
View Papertitled, Material and Design Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and Design Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 759-767, October 11–14, 2016,
... Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p0759 Copyright © 2016 ASM International®. All rights reserved. J. Parker, J. Shingledecker, J. Siefert, editors MECHANICAL ANALYSIS OF A BOILER WATER CIRCULATION PUMP Marcus Haßlöcher KSB AG, Frankenthal...
Abstract
View Papertitled, Mechanical Analysis of a Boiler Water Circulation Pump
View
PDF
for content titled, Mechanical Analysis of a Boiler Water Circulation Pump
In previous investigations on life with flexible driving were highly stressed components predominantly in hot continuous pressurized part of power plants in the foreground. However cases of damage and subsequent studies on peripheral components such as the boiler circulation system (boiler circulating pump) showed that a potential failure as well as a high hazard potential respectively great consequential damage can occur when such components are operated under different conditions. To avoid damages and losses resulting from damage to peripheral components, these components have to be subjected to further analysis. Here especially the pump housing is in the focus.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1190-1205, October 22–25, 2013,
..., [email protected] Valliappa Kalyanasundaram Formerly with University of Arkansas, Fayetteville, AR 72701, USA, currently with inspire AG, Switzerland Santosh B. Narasimhachary University of Arkansas, Fayetteville, AR 72701, USA Stuart R. Holdsworth EMPA, Switzerland ABSTRACT Creep-fatigue crack formation...
Abstract
View Papertitled, Harmonizing of Creep-Fatigue Test Methods through Development of ASTM Standards
View
PDF
for content titled, Harmonizing of Creep-Fatigue Test Methods through Development of ASTM Standards
Creep-fatigue crack formation (endurance) and crack growth rate data are necessary inputs for assessing the structural integrity and for estimating the design life of high temperature components in power generation and aircraft engine industries. Ensuring consistency in the reported test data, as well as an understanding of the inherent scatter and its source in the data, are both necessary for assuring quality and limitations of the analyses that rely on the data. In 2008, the American Society for Testing and Materials (ASTM) under the umbrella of its subcommittees E08.05 on Cyclic Deformation and Crack Formation and E08.06 on Crack Growth, and the sponsorship of Electric Power Research Institute (EPRI) through its international experts’ working group on creep-fatigue embarked on the task of developing separate standard test methods for creep-fatigue crack formation and creep-fatigue crack growth. The first standard entitled, “E-2714-09: Standard Test Method for Creep-fatigue Testing” was developed in 2009 and was followed up with a round-robin consisting of 13 laboratories around the world for testing the newly developed standard. This paper discusses the results of this round-robin concluded in 2012 using the widely used P91 steel that led to the formulation of the Precision and Bias statement contained in the version of the ASTM standard E2714 that was successfully balloted in the year 2013.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 675-688, October 3–5, 2007,
... CHARACTERIZATION OF MODERN MARTENSITIC STEELS K. Maile F. Kauffmann A. Klenk E. Roos MPA University of Stuttgart Pfaffenwaldring 32 70569 Stuttgart, Germany S. Straub ALSTOM Power Generation AG 68309 Mannheim, Germany K.H. Mayer ALSTOM Power Service GmbH 90208 Nürnberg, Germany Abstract This paper deals...
Abstract
View Papertitled, Microstructural Characterization of Modern Martensitic Steels
View
PDF
for content titled, Microstructural Characterization of Modern Martensitic Steels
TAF steel is a Japanese high-boron 10.5% Cr martensitic stainless steel known for its exceptional high-temperature creep strength. Its high boron content (300-400 ppm) limited practical applications due to reduced hot workability in large turbine components. Recent research suggests that increasing boron content while adjusting nitrogen levels could enhance creep properties by promoting fine vanadium carbonitride formation while preventing boron nitride formation. This study presents microstructural investigations, particularly using transmission electron microscopy, focusing on precipitation characteristics and long-term precipitate evolution within the COST 536 framework.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 86-95, August 31–September 3, 2010,
... Abstract This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant...
Abstract
View Papertitled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
View
PDF
for content titled, GKM Test Rig: Investigation of the Long Term Operation Behavior of Tubes and Forgings Made of Alloys for Future High Efficient Power Plants
This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant in Mannheim, Germany, simulates extreme conditions of up to 725°C and 350/200 bar pressure. After approximately 2000 hours of operation, the paper presents an overview of the rig's design, its integration into the existing plant, and the status of ongoing tests. It also outlines parallel material investigations, including creep rupture tests, mechanical-technological testing, and metallurgical characterization. This research is crucial for the development of materials capable of withstanding the severe conditions in next-generation power plants, potentially improving efficiency and performance in future energy production.
Proceedings Papers
Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Free
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 821-838, August 31–September 3, 2010,
[email protected] Scott Wilson Sulzer Metco AG ( Switzerland ) Rigackerstr. 16 5610 Wohlen, Switzerland [email protected] Petr Fiala Sulzer Metco ( Canada ) Inc. 10108 114 Street Fort Saskatchewan, T8L 4R1, Alberta, Canada [email protected] Ruediger Schuelein Sulzer Metco Coatings GmbH Freiberger Str...
Abstract
View Papertitled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
View
PDF
for content titled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Abradability, erosion and steam oxidation tests were conducted on commercial and experimental abradable coatings in order to evaluate their suitability for applications in steam turbines. Steam oxidation tests were carried out on free-standing top coat samples as well as coating systems consisting of a bond and an abradable top coat. Mapping of the abradability performance under widely varied seal strip incursion conditions was carried out for a candidate abradable coating that showed good steam oxidation performance in combination with good erosion resistance. The abradability tests were carried out on a specially designed test rig at elevated temperatures. The steam oxidation analysis combined with the abradability mapping results provide a potentially improved seal coating system that can be integrated into existing steam turbine designs for various seal locations. Such design integration is easily achieved and can be applied to steam turbine components that are sprayed in dedicated coating shops or even at the site of final turbine assembly.
1