Skip Nav Destination
Close Modal
Search Results for
X-ray diffraction
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 112
Search Results for X-ray diffraction
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 914-926, October 3–5, 2007,
...-dispersive X-ray analysis (EDX). Phase transformations in the HAZ were directly observed using in situ X-ray diffraction with synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory, IL, USA. Although both steels exhibited similar transformation behavior, their resulting...
Abstract
View Papertitled, The Heat Affected Zone of Boron Alloyed Creep Resistant 9% Chromium Steels and their Susceptibility to Type IV Cracking
View
PDF
for content titled, The Heat Affected Zone of Boron Alloyed Creep Resistant 9% Chromium Steels and their Susceptibility to Type IV Cracking
In thermal power plants, weldments of all currently used martensitic 9% chromium steels are prone to Type IV cracking in the fine-grained region of the heat-affected zone (HAZ). Japanese researchers have introduced a new martensitic steel for ultra-supercritical (USC) steam conditions that demonstrates resistance to Type IV cracking. This study compares a modified version of this boron-nitrogen balanced advanced 9Cr-3W-3Co steel with CB2, the most promising 9% Cr steel developed through the European research initiative COST, in terms of weldability. The HAZ was analyzed using the "Heat-Affected Zone Simulation" technique with a Gleeble 1500 thermo-mechanical simulator. Basic optical microscopy was complemented by advanced electron microscopy techniques, including energy-filtered TEM (EFTEM), electron energy loss spectroscopy (EELS), electron backscatter diffraction (EBSD), and energy-dispersive X-ray analysis (EDX). Phase transformations in the HAZ were directly observed using in situ X-ray diffraction with synchrotron radiation at the Advanced Photon Source (APS) of Argonne National Laboratory, IL, USA. Although both steels exhibited similar transformation behavior, their resulting microstructures after the weld thermal cycle differed significantly. At peak temperatures above 1200°C, delta ferrite formed and remained stable down to room temperature due to rapid cooling in both steels. While CB2 exhibited conventional coarse-grained (CG), fine-grained (FG), and intercritical HAZ regions, the boron-nitrogen balanced 9Cr steel did not develop a fine-grained HAZ. Since Type IV cracking primarily occurs in the FGHAZ, this alloy shows strong potential for eliminating Type IV cracking as a major life-limiting factor in heat-resistant steel weldments.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results...
Abstract
View Papertitled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
View
PDF
for content titled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 357-370, October 25–28, 2004,
... Abstract An iron aluminide (Fe 3 Al) intermetallic coating was deposited onto F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was characterized by electron microscopy, X-ray diffraction, oxidation, and adhesion. Fe 3 Al...
Abstract
View Papertitled, Corrosion Behavior of an HVOF-Sprayed Fe 3 Al Coating in a High-Temperature Oxidizing/Sulfidizing Environment
View
PDF
for content titled, Corrosion Behavior of an HVOF-Sprayed Fe 3 Al Coating in a High-Temperature Oxidizing/Sulfidizing Environment
An iron aluminide (Fe 3 Al) intermetallic coating was deposited onto F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was characterized by electron microscopy, X-ray diffraction, oxidation, and adhesion. Fe 3 Al coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment of N 2 -10%CO-5%CO 2 -2%H 2 O-0.12%H 2 S (by volume) at 500, 600, 700, and 800°C for approximately seven days. All specimens gained mass after exposure, inversely proportional to temperature increases. Representative cross-sectioned specimens from each temperature underwent scanning electron microscopy (SEM) and X-ray mapping examination. Results are presented in terms of corrosion weight gain and product formation. The research evaluated the effectiveness of an HVOF-sprayed Fe 3 Al coating in protecting a steel substrate exposed to a fossil energy environment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1469-1475, October 21–24, 2019,
...-(39,42,45)Al and ternary Ti-42Al-2X alloys (X=Fe, Cr, Nb, Ta, Mo) which was experimentally investigated by neutron and high energy X-ray diffraction is compared with the results of first principles calculations using density functional theory. Except for Cr the experimentally determined and the predicted...
Abstract
View Papertitled, Stability of Ordered B2-β o and Disordered bcc-β Phases in TiAl—A First Principles Study
View
PDF
for content titled, Stability of Ordered B2-β o and Disordered bcc-β Phases in TiAl—A First Principles Study
Either at higher temperatures or when a certain alloying element content is exceeded, γ-TiAl alloys contain the β phase (bcc) or its ordered derivate β o (B2). The relatively soft β phase can facilitate hot deformation, but β o is detrimental for creep strength and ductility. Thus, knowledge about β o →β phase transformation is desirable. Surprisingly, for the binary Ti-Al system it is under discussion whether the ordered β o phase exists. Also, the effect of alloying elements on the β phase ordering is still unclear. In the present work the ordering of the β phase in binary Ti-(39,42,45)Al and ternary Ti-42Al-2X alloys (X=Fe, Cr, Nb, Ta, Mo) which was experimentally investigated by neutron and high energy X-ray diffraction is compared with the results of first principles calculations using density functional theory. Except for Cr the experimentally determined and the predicted behavior correspond.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 327-335, October 21–24, 2019,
... on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide...
Abstract
View Papertitled, The Effect of Niobium Addition on Steam Oxidation Behavior of Ferritic Heat Resistant Steels at 923 K
View
PDF
for content titled, The Effect of Niobium Addition on Steam Oxidation Behavior of Ferritic Heat Resistant Steels at 923 K
High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high mechanical properties such as solid solution strengthening and precipitation hardening. However, the knowledge of the correlation between Laves phase precipitation and oxidation behavior has not clarified yet on 9Cr ferritic steels. This research will be focused on the effect of precipitation of Laves phase on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide mainly consist of wüstite on the Fe-9Cr in the initial stage while on Nb added samples magnetite was dominated. The results show that the Fe-9Cr- 2Nb alloy has a slower oxidation rate than the Fe-9Cr alloy after oxidized for 172.8 ks
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 486-493, October 11–14, 2016,
...., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. Change ratio of the system free energy and creep stress showed the relationship with one master curve irrespective of creep conditions, indicating that the steel ruptures when the applied stress...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
In order to evaluate long term creep strength of modified 9Cr ferritic steels, the system free energy of creep ruptured specimens at both 650 and 700 °C is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. Change ratio of the system free energy and creep stress showed the relationship with one master curve irrespective of creep conditions, indicating that the steel ruptures when the applied stress exceeds a limited stress depending on the microstructural state expressed by the change ratio of system free energy. Furthermore, it was found that dominant factor of the change ratio was the chemical free energy change. On the basis of these results, long term creep strength of the steel was evaluated at 700 °C, for example, 19MPa at 700 °C after 10 5 h. It is concluded that long term creep strength of modified 9Cr ferritic steels can be predicted by the system free energy concept using the ruptured specimens with various creep conditions.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density...
Abstract
View Papertitled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
View
PDF
for content titled, Microstructure Characterization of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 982-991, October 22–25, 2013,
... the microstructure, determination of phase transformation points, scanning electron microscopy, and X-ray diffraction. The results revealed that the addition of RE elements has the potential to enhance the properties and modify the microstructure of SA335P91 welds. ferritic stainless steel impact test...
Abstract
View Papertitled, Influence of Trace RE Element on Properties and Microstructures of SA335P91 Weld Metal
View
PDF
for content titled, Influence of Trace RE Element on Properties and Microstructures of SA335P91 Weld Metal
This study investigates the impact of adding small amounts of rare earth (RE) elements on the properties and microstructures of SA335P91 steel welds. The RE elements were incorporated into the weld metal using a coating process. The researchers then proposed an optimal RE formula aimed at achieving improved properties and microstructures. To evaluate the effectiveness of this approach, various tests were conducted on both welds with and without RE additions. These tests included tensile testing (both at room and high temperatures), impact testing, metallographic analysis to examine the microstructure, determination of phase transformation points, scanning electron microscopy, and X-ray diffraction. The results revealed that the addition of RE elements has the potential to enhance the properties and modify the microstructure of SA335P91 welds.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1363-1371, October 22–25, 2013,
... energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
Prediction of long-term creep strength is an important issue for industrial plants operated at elevated temperatures, although the creep strength of high Cr ferritic steels depends on their microstructural evolution during creep. The state of microstructure in metallic materials can be expressed as numerical values based on a concept of system free energy. In this study, in order to evaluate long term creep strength of 9Cr ferritic steel containing B, change in the system free energy during creep of the steel is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using the rate constants which depend on applied stress. On the basis of these facts, long term creep strength of the steel can be evaluated at both 948K(675°C) and 973K(700 °C).
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 972-985, August 31–September 3, 2010,
... hours which is contrary to thermodynamic predictions. In addition X-ray diffraction (XRD) and image analysis has been carried out to semi-quantitatively measure the amount of sigma phase present. The area fraction of sigma has been found to be 2.77 and 2.23 percent at 700 and 750 °C respectively...
Abstract
View Papertitled, Sigma Phase Precipitation in 347HFG Stainless Steel for Supercritical Power Plant Operation
View
PDF
for content titled, Sigma Phase Precipitation in 347HFG Stainless Steel for Supercritical Power Plant Operation
The microstructural evolution has been investigated for an 18Cr-12Ni stainless steel (347HFG) that has been subject to a thermo-mechanical treatment to obtain a fine grain size (ASTM 7-10). In particular, sigma phase precipitation and growth has been evaluated. Samples of 347HFG stainless steel have been isothermally heat treated to reproduce and accelerate the ageing conditions experienced in-service at temperatures between 600 and 750 °C for up to 10,000 hours. Results have shown that sigma phase is precipitated at triple points and along grain boundaries after as little as 1000 hours which is contrary to thermodynamic predictions. In addition X-ray diffraction (XRD) and image analysis has been carried out to semi-quantitatively measure the amount of sigma phase present. The area fraction of sigma has been found to be 2.77 and 2.23 percent at 700 and 750 °C respectively. This is a higher volume fraction of sigma phase than has been previously observed in regular 347H at these conditions. It is thought that this is due to the reduced grain size that has provided an increase in nucleation sites and diffusion paths that can enhance the precipitation and growth of sigma phase. The results from this study are discussed with regards to the effect of precipitation on the service life of a 347HFG stainless steel tube operating in advanced supercritical boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 171-182, February 25–28, 2025,
... testing at 750°C and 950°C for up to 5000 hours, with interim analyses conducted at 2000 hours. The post-exposure analysis employed X-ray diffraction (XRD) to identify phase development and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) to examine surface morphology, cross...
Abstract
View Papertitled, Steam Oxidation Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
View
PDF
for content titled, Steam Oxidation Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
This study investigates the steam oxidation behavior of Alloy 699 XA, a material containing 30 wt.% chromium and 2 wt.% aluminum that forms protective oxide scales in low-oxygen conditions. The research compares four variants of the alloy: conventional bulk material, a laser powder bed fusion (LPBF) additively manufactured version, and two modified compositions. The modified versions include MAC-UN-699-G, optimized for gamma-prime precipitation, and MAC-ISIN-699, which underwent in-situ internal nitridation during powder atomization. All variants were subjected to steam oxidation testing at 750°C and 950°C for up to 5000 hours, with interim analyses conducted at 2000 hours. The post-exposure analysis employed X-ray diffraction (XRD) to identify phase development and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) to examine surface morphology, cross-sectional microstructure, and chemical composition. This study addresses a significant knowledge gap regarding the steam oxidation behavior of 699 XA alloy, particularly in its additively manufactured state.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
..., was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power...
Abstract
View Papertitled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1114-1125, February 25–28, 2025,
...) techniques as well as X-ray diffraction. Figure 3 uses a metallographic cross section to illustrate the areas at which the aforementioned analyses were carried out. Figure 3 Metallographic cross section of an investigated sample illustrating the location of the different investigations performed Results Dye...
Abstract
View Papertitled, Claddings, Coatings, and Surface Modification: Load Behavior of Hardfaced Sealing Surfaces of Fittings
View
PDF
for content titled, Claddings, Coatings, and Surface Modification: Load Behavior of Hardfaced Sealing Surfaces of Fittings
High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up welding, usually in several layers. The valve materials are generally heat-resistant steels such as 10CrMo9-10 (1.7380), X20CrMoV1 (1.4922), or Grade 91 / Grade 92 (1.4903 / 1.4901). In recent years, cracks or delaminations have frequently occurred within the hardfaced layer. The influence of cycling operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination behavior and to understand the involved damage mechanisms. Thermostatic and cyclic exposure tests have shown that cracking is favored by the formation of brittle phases due to iron dilution from the substrate material during the manufacturing process. Recommendations for the welding process of hardfaced sealing surfaces of fittings were derived from the investigation results.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 900-911, October 11–14, 2016,
... and Ni based alloys, throughout of state of the art micro analyses and x-ray diffraction is aiming to provide the results carried out at 800 oC for 3000 hours in pure deionised water steam system. 2. Experimental Procedure 2.1 Materials In the study, in total seven materials were exposed; two solid...
Abstract
View Papertitled, Steam Oxidation Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
View
PDF
for content titled, Steam Oxidation Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
The A-USC technology is still under development due to limited number of materials complying with the requirements of high creep strength and high performance in highly aggressive corrosion environments. Development of power plant in much higher temperatures than A-USC is currently impossible due to the materials limitation. Currently, nickel-based superalloys besides advanced austenitic steels are the viable candidates for some of the A-USC components in the boiler, turbine, and piping systems due to higher strength and improved corrosion resistance than standard ferritic or austenitic stainless steels. The paper, presents the study performed at 800 °C for 3000 hours on 3 advanced austenitic steels; 309S, 310S and HR3C with higher than 20 Cr wt% content and 4 Ni-based alloys including: two solid-solution strengthened alloys (Haynes 230), 617 alloy and two (γ’) gamma - prime strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray Diffractometer (XRD). Mass change data have been examined every 250 hours.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction...
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
...-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations. creep energy piping fossil power plants inclusions...
Abstract
View Papertitled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
... are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized...
Abstract
View Papertitled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
View
PDF
for content titled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... densities ( m) were determined using whole pattern peak profile analysis of X-ray diffraction patterns collected from the different weldment regions [21]. The microstructural measurements ( ss, sb, m) were converted into a microstructural strength by considering them as obstacles for dislocation movement...
Abstract
View Papertitled, Microstructural Characterization and Small Punch Creep Testing of 9-12%Cr Steel Weldments
View
PDF
for content titled, Microstructural Characterization and Small Punch Creep Testing of 9-12%Cr Steel Weldments
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... Bal. 1.5 4 4.2 1.9 0.06 3.3 - - 0.02 - 5.1 - CN 11.2 0.17 1.98 0.04 Fe Other - Bal. 6.55 Nb, 0.03 Bal. Ti The resulting galling buttons were then used for X-ray diffraction analysis of the contacting surfaces, with the diffraction plane oriented parallel to the surface. Cu K radiation ( = 1.54...
Abstract
View Papertitled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
View
PDF
for content titled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 312-324, August 31–September 3, 2010,
... microscopy (both the surface and in cross-section) to determine changes within the microstructure due to exposure to the environment. Selected samples underwent x-ray diffraction analysis of the oxidized surface. Results and Discussion The mass gain results for the uncoated oxidation coupons are shown in Fig...
Abstract
View Papertitled, Materials Performance of Oxyfuel Turbine Alloys
View
PDF
for content titled, Materials Performance of Oxyfuel Turbine Alloys
Oxyfuel combustion efforts to burn fossil fuels with oxygen, for easier post-combustion CO 2 capture, include schemes to use flue gas to drive turbines for power generation. The environment examined here is 10% CO 2 and 0.2% O 2 , with the balance being steam, with temperatures ranging from 630 to 821 °C. The relatively high C and O 2 activities of this environment, as compared to pure steam, may lead to changes in oxidation behavior and mechanical properties. Oxidation coupons of Ni- and Co-base superalloys, in both bare metal and TBC coated conditions, were exposed to this environment for up to 1000 hours. The results of these exposures, in terms of mass gain and scale morphology, are presented.
1