Skip Nav Destination
Close Modal
Search Results for
USC high-temperature rotor shafts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 21
Search Results for USC high-temperature rotor shafts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1115-1123, October 25–28, 2004,
... Abstract The effect of Cr content on the creep strength at 650°C was examined with high Cr heat resistant steels for the USC high-temperature rotor shafts. The amount of Cr was varied from 8.5% to 11.5%, and then, the alloying effect of Cr was investigated on the stability of the precipitates...
Abstract
View Papertitled, Optimization of Cr Content for Long-Term Creep Strength in <span class="search-highlight">High</span> Cr Heat Resistant Steel
View
PDF
for content titled, Optimization of Cr Content for Long-Term Creep Strength in <span class="search-highlight">High</span> Cr Heat Resistant Steel
The effect of Cr content on the creep strength at 650°C was examined with high Cr heat resistant steels for the USC high-temperature rotor shafts. The amount of Cr was varied from 8.5% to 11.5%, and then, the alloying effect of Cr was investigated on the stability of the precipitates at 650°C. Within the present range of the Cr content, the short-term creep rupture life under the higher applied stress increased with the Cr content in the steels, whereas the long-term creep rupture life under the lower applied stress decreased with the Cr content in the steels. For example, under the applied stress of 98MPa, the 9%Cr steel exhibited the longest creep rupture life among the experimental steels. Also, it was found from the experiment using the extracted residues that the degree of solution strengthening and the sorts of precipitates scarcely changed regardless of the Cr content in the steels. The Laves phase precipitated finely in the lath was enlarged in the 11.5%Cr steel even after a short-term creep. This result indicates that the coarsening of precipitates such as the Laves phase promotes the recovery of the lath in the early stage of creep deformation. It was suggested that 9%Cr is desirable content in the ferritic steel for suppressing the degradation of creep strength in 98MPa at 650°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1204-1214, October 21–24, 2019,
... in actual operation. As mentioned above, the rotation test was conducted at higher temperatures than design temperatures of the A-USC steam turbine, and the rotor exhibited steady and stable rotation during the test. The shaft vibrations at rated speed of the test rotor were much lower than the design...
Abstract
View Papertitled, Development of Steam Turbine for A-<span class="search-highlight">USC</span> Plant
View
PDF
for content titled, Development of Steam Turbine for A-<span class="search-highlight">USC</span> Plant
Enhancement of the steam conditions is one of the most effective measures to achieve the goal of higher thermal efficiency. 700°C class A-USC (Advanced Ultra Super Critical Steam Conditions) power plant is one of the remarkable technologies to achieve the goal and reduce CO 2 emissions from fossil fuel power plants. Toshiba has been working on the A-USC development project with subsidy from METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). In this project, A-USC power plants with steam parameters of 35MPa 700/720/720°C were considered. To date, various materials have been developed and tested to verify their characteristics for use in A-USC power plants. And some of these materials are being investigated as to their suitability for use in long term. Together with members of the project, we carried out the boiler component test using a commercially-operating boiler. We manufactured a small-scale turbine casing made of nickel-based alloy, and supplied it for the test. In addition, we manufactured a turbine rotor for turbine rotation tests, and carried out the test at 700°C and rotating speed of 3,600rpm conditions. In this paper, we show the results of the A-USC steam turbine development obtained by the project.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 325-341, August 31–September 3, 2010,
... that this technology is suitable for such upgrades and can reduce CO 2 emissions by about 15%. Following this study, a large-scale development of A-USC technology began in August 2008, focusing on developing 700°C class boiler, turbine, and valve technologies, including high-temperature material technology. Candidate...
Abstract
View Papertitled, Advanced <span class="search-highlight">USC</span> Technology Development in Japan
View
PDF
for content titled, Advanced <span class="search-highlight">USC</span> Technology Development in Japan
The “Cool Earth-Innovative Energy Technology Program,” launched by the Japanese government in March 2008, aims to significantly reduce global greenhouse gas emissions. Among the 21 selected technologies is the Advanced Ultra Super Critical (A-USC) pressure power generation, which targets the commercialization of a 700°C class pulverized coal power system with a power generation efficiency of 46% by around 2015. As of 2004, Japan's pulverized coal power plant capacity reached 35 GW, with the latest plants achieving a steam temperature of 600°C and a net thermal efficiency of approximately 42% (HHV). Older plants from the 1970s and early 1980s, with steam temperatures of 538°C or 566°C, are nearing the need for refurbishment or rebuilding. A case study on retrofitting these older plants with A-USC technology, which uses a 700°C class steam temperature, demonstrated that this technology is suitable for such upgrades and can reduce CO 2 emissions by about 15%. Following this study, a large-scale development of A-USC technology began in August 2008, focusing on developing 700°C class boiler, turbine, and valve technologies, including high-temperature material technology. Candidate materials for boilers and turbine rotor and casing materials are being developed and tested. Two years into the project, useful test results regarding these candidate materials have been obtained, contributing to the advancement of A-USC technology.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, February 25–28, 2025,
... nickel-based alloys (Inconel 740H and Haynes 282) for the high temperature sections. The project team also conducted testing to support ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The ComTest...
Abstract
View Papertitled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
View
PDF
for content titled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project, primarily funded by the U.S. Department of Energy and Ohio Coal Development Office between 2015 and 2023, focused on validating the manufacture of commercial-scale components for an 800 megawatt power plant operating at 760°C and 238 bar steam conditions. The project scope encompassed fabrication of full-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME Code Stamp approval for nickel-based alloy pressure relief valves. This comprehensive effort successfully established technical readiness for commercial-scale A-USC demonstration plants while developing a U.S.-based supply chain and providing more accurate cost estimates for future installations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 778-789, October 11–14, 2016,
... have been introduced in high efficient USC power plants with a total capacity of about 187 GW worldwide [IEA WEO 2013]. COST E and F are meanwhile specified in the German standard SEW 555 with the steel numbers 1.4906 (grade E) and 1.4902 (grade F). Bohler manufactured more than 490 rotor forgings out...
Abstract
View Papertitled, 9-10% Cr Steel Forgings for <span class="search-highlight">USC</span> Turbines - Experiences in Manufacturing and Development Status of MARBN Steels
View
PDF
for content titled, 9-10% Cr Steel Forgings for <span class="search-highlight">USC</span> Turbines - Experiences in Manufacturing and Development Status of MARBN Steels
Sufficient energy availability in combination with lowest environmental pollution is a basic necessity for a high living standard in each country. To guarantee power supply for future generations, improved technologies to achieve higher efficiency combined with reduced environmental impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components for the power generation industry. This paper reports about experiences in the fabrication of forged components for steam turbines for ultra-supercritical application - from basic properties up to ultrasonic detectability results. The materials used so far are the highly creep-resistant martensitic 9-10% Cr steel class for operating temperatures up to 625°C developed in the frame of the European Cost research program. Additionally our research activities on the latest generation of high temperature resistant steels for operating temperatures up to 650 degree Celsius – the boron containing 9% Cr martensitic steels (MARBN) - are discussed. In order to improve the creep behavior, MARBN steels with different heat treatments and microstructures were investigated using optical microscopy, SEM and EBSD. Furthermore, short term creep rupture tests at 650 degree Celsius were performed, followed by systematic microstructural investigations. As a result it can be concluded, that advanced microstructures can increase the time to rupture of the selected MARBN steels by more than 10 percent.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1283-1291, October 22–25, 2013,
... Abstract The trial production of FENIX-700 turbine rotors for advanced-ultra super critical (A-USC) power generation was conducted, and their microstructure, tensile, impact, and creep properties were evaluated. Two 10-ton class trial forgings were successfully produced through double melting...
Abstract
View Papertitled, Trial Production and Evaluation of 10-Ton Class A-<span class="search-highlight">USC</span> Turbine <span class="search-highlight">Rotor</span> of Ni-Fe Base Superalloy FENIX-700
View
PDF
for content titled, Trial Production and Evaluation of 10-Ton Class A-<span class="search-highlight">USC</span> Turbine <span class="search-highlight">Rotor</span> of Ni-Fe Base Superalloy FENIX-700
The trial production of FENIX-700 turbine rotors for advanced-ultra super critical (A-USC) power generation was conducted, and their microstructure, tensile, impact, and creep properties were evaluated. Two 10-ton class trial forgings were successfully produced through double melting of VIM and ESR and free forging with a 14,000 ton hydraulic press. For examining the effect of the forging condition on the microstructure of the rotors, we adopted lower finish temperatures and an increased forging ratio on the last forging for the second trial. The grains of the second trial forging were refined by changing the forging condition. In particular, the grain size of the center of the rotor was remarkably decreased from the grain size number 0.5 to 2.8. Grain refinement improved the permeability of the ultrasonic wave in the ultrasonic inspection test, resulting in decreasing the minimum detectable flaw size (MDFS). The ductility and toughness were also improved by grain refinement. Although the grain size was decreased, the time to rupture in the creep test at 700 °C was comparable to the previous results of FENIX-700, and the estimated 105 h rupture stress at 700 °C was sufficiently higher than 100 MPa. However, it was clarified that the particles of gamma-prime in the center of the rotor had been coarsened due to the mass effect. The slight decrease of 0.2% proof stress and shortening of creep rupture time at 700 °C were attributed to the coarse gamma-prime particles. The results of the present trial expressly demonstrated that it is possible to manufacture 10-ton class A-USC turbine rotors of FENIX-700 with excellent mechanical properties and good permeability of the ultrasonic wave.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 423-435, August 31–September 3, 2010,
... compatible Ni-base welding materials for joining FENIX-700 to 12% Cr ferritic steel in 700°C class steam turbine applications. alloy design A-USC steam turbine rotors CALPHAD method chemical composition forging shaft nickel-iron-chromium alloys segregation welding Advances in Materials...
Abstract
View Papertitled, Development Status of Ni-Fe Base Superalloy for 700 °C Class A-<span class="search-highlight">USC</span> Steam Turbine <span class="search-highlight">Rotor</span> Application
View
PDF
for content titled, Development Status of Ni-Fe Base Superalloy for 700 °C Class A-<span class="search-highlight">USC</span> Steam Turbine <span class="search-highlight">Rotor</span> Application
A modified version of Alloy 706, designated FENIX-700, was developed using the CALPHAD method to improve high-temperature stability above 700°C. The new alloy features reduced Nb and increased Al content, relying on γ' (Ni 3 Al) strengthening while eliminating γ'' (Ni 3 Nb), δ, and η phases. This modification improved both creep temperature capability (from 650°C to 700°C) and segregation properties. Successful manufacturing trials included a 760 mm² forging shaft using triple melt processing and a 1050 mm ESR ingot, demonstrating industrial viability. The study also explores compatible Ni-base welding materials for joining FENIX-700 to 12% Cr ferritic steel in 700°C class steam turbine applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported. A-USC steam...
Abstract
View Papertitled, Status of Large Scale Manufacture of Nickel Alloy Turbine <span class="search-highlight">Rotor</span> Forgings for A-<span class="search-highlight">USC</span> Steam Power Plants
View
PDF
for content titled, Status of Large Scale Manufacture of Nickel Alloy Turbine <span class="search-highlight">Rotor</span> Forgings for A-<span class="search-highlight">USC</span> Steam Power Plants
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 281-292, October 22–25, 2013,
... the last years Boehler Edelstahl Open Die Forge has gained a lot of experience in the manufacturing of forgings in highly alloyed steels. Many rotor forgings, discs and hollow shafts have been manufactured for high temperature applications primary in the creep resistant chromium steels COST grade E (10...
Abstract
View Papertitled, Gas and Steam Turbine Forgings for <span class="search-highlight">High</span> Efficiency Fossil Power Plants
View
PDF
for content titled, Gas and Steam Turbine Forgings for <span class="search-highlight">High</span> Efficiency Fossil Power Plants
Sufficient available energy in combination with lowest environmental pollution is a basic necessity for a high standard of living in every country. In order to guarantee power supply for future generations it is necessary to use fossil fuels as efficient as possible. This fact calls for the need of power plants with improved technologies to achieve higher efficiency combined with reduced environmental impact. In order to realize this goal it is not only a challenge for power station manufacturers, but also for manufacturers of special steels and forgings, who have to produce improved components with more advanced materials and more complex manufacturing processes. This paper reports about experiences in the fabrication of forged components for gas and steam turbines followed by achievable mechanical properties and ultrasonic detectability results. The materials are the creep resistant martensitic Cr steels developed in the frame of the European Cost research programme. Whereas Boron containing 10% Cr steels are suitable for steam temperatures of 625°C and slightly higher, Ni-based alloys shall be used for temperatures of 700°C and above. One pilot rotor forging, representing a HP-rotor for welded construction, has been manufactured out of alloy Inconel 625 within the frame of the European Thermie project AD700.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been...
Abstract
View Papertitled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with <span class="search-highlight">Temperature</span> Capability 800°C
View
PDF
for content titled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with <span class="search-highlight">Temperature</span> Capability 800°C
Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability of 800°C with high manufacturability achieved by controlling microstructure stability and segregation property. The 700°C class A-USC materials are the mainstream of current development, and trial production of 10 ton-class forged parts has been reported. However, there have been no reports on the development and trial manufacturing of the A-USC materials with temperature capability of 800°C. In this report, results of trial manufacturing and its microstructure of the developed superalloy which has both temperature capability 800°C and good manufacturability are presented. The trial manufacturing of the large forging, boiler tubes and turbine blades using developed material were successfully achieved. According to short term creep tests of the large forging and the tube approximate 100,000h creep strength of developed material was estimated to be 270MPa at 700 °C and 100MPa at 800°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 386-392, August 31–September 3, 2010,
... at approximately 1000°C. However, it is generally difficult to satisfy both hot workability at 1000°C and high temperature strength in the range of 750 800°C, which is a major obstacle to enhancing A-USC efficiency. The purpose of this research is to develop Ni-base alloys which can be used at 750°C or higher...
Abstract
View Papertitled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-<span class="search-highlight">USC</span> Steam Power Plant
View
PDF
for content titled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-<span class="search-highlight">USC</span> Steam Power Plant
A new Ni-base superalloy has been developed for Advanced Ultra Super Critical (A-USC) power plants operating above 750°C, targeting reduced CO 2 emissions through improved efficiency. While existing research focuses on 700°C-class materials, this study presents a novel alloy design for higher-temperature applications. Using the CALPHAD method, a prototype alloy (Ni-23Co-18Cr-8W-4Al-0.1C) was developed by eliminating Ti, Nb, and Ta to improve hot-workability while maintaining strength. The resulting alloy demonstrates twice the creep strength of Nimonic 263, with an estimated 10 5 h steam turbine creep resistance temperature of 780°C, marking a significant advancement in A-USC material capabilities.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 338-352, October 3–5, 2007,
...]. In this case machine layout consists of single high pressure (HP), single intermediate pressure (IP) and double low pressure (LP) modules. HP valves The HP inlet valves are exposed to the full live steam temperature and pressure over the life of the machine. For the new generation of USC machines a detailed...
Abstract
View Papertitled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
View
PDF
for content titled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
Development activities initiated over a decade ago within the COST 522 program and continuing through the COST 536 Action have yielded significant progress in constructing a new generation of steam power plants capable of operating under advanced steam conditions. These innovative plants promise substantially improved thermal efficiency, with steam temperatures reaching up to 620°C (1150°F). Recent successful power plant orders in Europe and the United States stem from critical advancements, including the development, testing, and qualification of 10% Cr steels with enhanced long-term creep properties for high-temperature components such as turbine rotors and valve casings. Extensive in-house development efforts have focused on fabrication, weldability, mechanical integrity, and fracture mechanics evaluations of full-sized forged and cast components. These materials will be implemented in several new coal-fired power plants, notably the Hempstead plant in the USA, which will operate with live steam temperatures of 599°C (1111°F) and reheat steam temperatures of 607°C (1125°F). The improved creep properties enable the construction of casings with reduced wall thicknesses, offering greater thermal flexibility at lower component costs and facilitating welded turbine rotors for high-temperature applications without requiring cooling in the steam inlet region. Looking forward, further efficiency improvements are anticipated through the introduction of nickel alloys in steam turbine and boiler components, with the European AD700 project targeting reheat steam temperatures of 720°C (1328°F) and the US Department of Energy project aiming even higher at 760°C (1400°F). The AD700 project has already demonstrated the technical feasibility of such advanced steam power plants, with engineering tasks progressing toward the construction of a 550 MW demonstration plant, while DOE activities continue to address boiler concerns and focus on rotor welding, mechanical integrity, and steam oxidation resistance.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 361-372, August 31–September 3, 2010,
... or more, are being developed under THERMIE program in Europe, DOE project in US and national project in Japan (13). High temperature components in A-USC power plants, such as turbine rotors and boiler tubes, which are now made from ferritic steel, are expected to be replaced by Ni or Ni Fe based...
Abstract
View Papertitled, Effect of Grain Size on Mechanical Properties of Ni-Fe Base Superalloy for Advanced <span class="search-highlight">USC</span> Turbine <span class="search-highlight">Rotor</span> Materials
View
PDF
for content titled, Effect of Grain Size on Mechanical Properties of Ni-Fe Base Superalloy for Advanced <span class="search-highlight">USC</span> Turbine <span class="search-highlight">Rotor</span> Materials
The effect of grain size after solution treatment on the mechanical properties of FENIX-700, including its cooling rate, was investigated. In addition, the dependance of precipitation observed at grain boundaries on the heat treatment conditions was also discussed on the basis of the results of microstructure observations. It was confirmed that the tensile ductility, the creep rupture ductility, and the absorbed energy decreased as the grain size increased. The creep rupture strength, in contrast, increased remarkably as the grain size increased. The tensile strength increased as the cooling rate increased. Experimental results showed that satisfactory mechanical properties would be obtained for a grain size of ASTM G.S.No. 1.0-3.0.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 47-54, October 11–14, 2016,
... and have already found commercial applications in the new USC power plants with operation conditions up to 620°C. These steels have found applications in both large castings and rotor forgings. Additionally P92 steel is used as a boiler pipe material. The next step is to develop steels for 650°C...
Abstract
View Papertitled, Review of the European Developments of MarBN Steel for <span class="search-highlight">USC</span> Power Plants
View
PDF
for content titled, Review of the European Developments of MarBN Steel for <span class="search-highlight">USC</span> Power Plants
Current demands of the power generation market require components with improved materials properties. The focus is not only on the higher operation temperatures and pressures but also more frequent cycling to accommodate the energy produced from renewable sources. Following the successful developments of steels within the COST 501, 522 and 536 programmes, further advances are being researched. As nickel superalloys remain an expensive option for coal power plants, there is a significant drive for improvements of 9-12% Cr steels to meet new demands. The most promising of the potential candidates identified for 650°C application is MarBN steel (9Cr-3Co-3W-V-Nb). This paper reviews the current state of European developments on MarBN steel. Work on this alloy has been carried out for the last 5 years. Initial projects focused on development of the cast components. UK IMPACT and following INMAP projects successfully demonstrated manufacturing capabilities of large casting components. More recent collaborations aim to develop full-size boiler components and large rotor forgings as well as further examine the properties in the operating conditions (i.e. corrosion and oxidation resistance, creep-fatigue behaviour). Additionally significant focus is placed on modelling the behaviour of MarBN components, in terms of both microstructural changes and the resulting properties.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 181-189, October 11–14, 2016,
... Abstract The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep...
Abstract
View Papertitled, Effects of Trace Elements on Creep Properties of Nickel-Iron Base Superalloy
View
PDF
for content titled, Effects of Trace Elements on Creep Properties of Nickel-Iron Base Superalloy
The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep properties of forged samples with seven different compositions were examined. No significant differences were observed in the creep rate versus time curves of the samples, of which contents of magnesium, zirconium, manganese and sulfur were varied. In contrast, the curves of phosphorus-added samples showed very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed that there were fine precipitates consisting of phosphorus and niobium at the grain boundaries. The significant suppression of the creep deformation of phosphorus-added sample may be attributed to the grain boundary strengthening caused by the fine grain boundary precipitates.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 872-885, August 31–September 3, 2010,
... Abstract As conventional coal-fired power plants seek to reduce greenhouse gas emissions by increasing efficiency, the temperature limitations of traditional ferritic/martensitic steels used in high-temperature components present a significant challenge. With Advanced Ultra Supercritical (A-USC...
Abstract
View Papertitled, Processing of Advanced Alloys for A-<span class="search-highlight">USC</span> Steam Turbine Applications
View
PDF
for content titled, Processing of Advanced Alloys for A-<span class="search-highlight">USC</span> Steam Turbine Applications
As conventional coal-fired power plants seek to reduce greenhouse gas emissions by increasing efficiency, the temperature limitations of traditional ferritic/martensitic steels used in high-temperature components present a significant challenge. With Advanced Ultra Supercritical (A-USC) power plants proposing steam temperatures of 760°C, attention has turned to nickel-based superalloys as potential replacements, since ferritic/martensitic steels cannot withstand such extreme conditions. However, the current absence of cast nickel-based superalloys combining high strength, creep-resistance, and weldability has led to the development of cast analogs of wrought nickel-based superalloys, including H263, H282, and N105. This paper examines the alloy design criteria, processing experiences, as-processed and heat-treated microstructures, and selected mechanical properties of these materials while also discussing their potential for full-scale development.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 656-667, October 11–14, 2016,
.... Parker, J. Shingledecker, J. Siefert, editors NEW MATERIAL AND MANUFACTURING DEVELOPMENTS FOR USC AND A-USC STEAM TURBINE ROTOR FORGINGS B. Donth, N. Blaes, A. Diwo, D. Bokelmann Saarschmiede GmbH Freiformschmiede (SSF), Völklingen, Germany ABSTRACT COST FB2 steel alloyed with boron is currently the best...
Abstract
View Papertitled, New Material and Manufacturing Developments for <span class="search-highlight">USC</span> and A-<span class="search-highlight">USC</span> Steam Turbine <span class="search-highlight">Rotor</span> Forgings
View
PDF
for content titled, New Material and Manufacturing Developments for <span class="search-highlight">USC</span> and A-<span class="search-highlight">USC</span> Steam Turbine <span class="search-highlight">Rotor</span> Forgings
COST FB2 steel alloyed with boron is currently the best available martensitic 9% Cr steel for turbine shafts subjected to steam temperatures up to 620°C and meanwhile introduced into production for application in commercial power plants. Currently several development programs are running to develop materials for further increase of application temperature up to 650°C. For realization of a 650ºC power plant not only creep strength, but also resistance against steam oxidation must be improved by increase of Cr content up to 11-12%. In the past all attempts to develop stable creep resistant martensitic 11-12% Cr steels for 650°C failed due to breakdown in long-term creep strength. Therefore new alloy concepts have been developed by replacing the fine nitride strengthening particles by controlled and accelerated precipitation of the more stable Z phase. Therefore the European project “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed the temperature limit of 650°C, only nickel base alloys can be used. One of the most promising candidate alloys for rotor forgings subjected to steam temperatures of 700°C is Alloy 617, which was already intensively investigated. For still higher temperatures in the range of 750°C only γ‘-precipitation hardened nickel base alloys, such as Alloy 263, can be applied. Therefore the “NextGenPower” project was launched and aimed at manufacture and demonstration of parts from Ni-based alloys for application in steam power plants at 750°C. One of the main goals was to develop turbine rotor materials and to demonstrate manufacturability of forgings for full scale turbine rotor parts. Contributing to this project, Saarschmiede has produced for the first time a large rotor forging in the Ni base Alloy 263. Numeric simulations of ingot manufacture, forging and heat treatment have been performed and a large trial rotor forging in Alloy 263 with a diameter of 1000 mm was successfully produced from a triple melt ingot. Experiences in manufacture and test results are presented.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 373-385, August 31–September 3, 2010,
... that it would be easy to make a large ingot which could be used as rotors or pipes. From these calculation results, we have been tried to make an 850mm ESR ingot of USC141. Introduction High efficiency steam turbines have been developed for advanced ultra super critical (A-USC) power plants because...
Abstract
View Papertitled, Low Thermal Expansion Ni-Base Superalloy for 700 C Class Steam Turbine Plant (USC141)
View
PDF
for content titled, Low Thermal Expansion Ni-Base Superalloy for 700 C Class Steam Turbine Plant (USC141)
Hitachi and Hitachi Metals have developed low thermal expansion Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141) for use as A-USC steam turbine material. The approximate 10 5 h creep rupture strength at 740° C is 100MPa, so USC141 can be expected to apply for blades and bolts. Now we have been studying to get better creep properties by microstructure controlling such as grain size or grain boundary morphology. In addition, the segregation test of USC141 shows good Freckle tendencies, it means that it would be easy to make a large ingot which could be used as rotors or pipes. From these calculation results, we have been tried to make an 850mmϕ ESR ingot of USC141.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... in Table 2. Table 1: Example for SIEMENS material concept in USC Steam Power Plants Component Casings High Pressure Turbine 9-10CrMoWV 1CrMoV Intermediate Pressure Turbine 9-10CrMoWV Cast Iron High-/ Intermediate Pressure Turbine 9-10CrMoWV 1CrMoV Low Pressure Turbine Structural steel Cast Iron Rotor...
Abstract
View Papertitled, Material and Design Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and Design Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 627-636, October 22–25, 2013,
... for the steam turbine rotor shafts of the coal-fired power plants operated under the elevated temperature, such as the USC conditions above 600oC[1-3]. However, it is known that the creep rupture life under the low applied stresses at 600-650oC is much shorter than the predicted one estimated from the short...
Abstract
View Papertitled, Effects of Cr and W Content in <span class="search-highlight">High</span> Cr Ferritic Heat-Resistant Steels on Long-Term Creep Rupture Strength
View
PDF
for content titled, Effects of Cr and W Content in <span class="search-highlight">High</span> Cr Ferritic Heat-Resistant Steels on Long-Term Creep Rupture Strength
The effects of Cr and W on the creep rupture life of 8.5-11.5Cr steels at 650°C were evaluated. Throughout this paper the specimen composition is expressed in mass percent. The creep rupture life of 8.5Cr steel is the longest in 8.5-11.5Cr steels at 650°C under the stress of 78MPa. The creep rupture life of 9Cr steel at 650°C was extended with increasing W content. The creep strength of the modified steel, 9Cr-4W-3Co-0.2V-NbBN steel, at 650°C did not decrease sharply up to 32000h. The 105h creep rupture temperature of this steel under the stress of 100MPa was estimated to be approximately 635°C using Larson-Miller parameter. M 23 C 6 type carbides and VX type carbonitrides were observed on the lath boundary of the modified steel. The stability of these precipitates in the modified steel is likely to suppress the degradation of the long term creep strength at 650°C.
1