Skip Nav Destination
Close Modal
Search Results for
T24 steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 22 Search Results for
T24 steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1001-1009, October 11–14, 2016,
... classical low alloy creep resistant steels 16Mo3, 13CrMo4-5 or 10CrMo9-10 for membrane waterwall construction for these service condition. New modified low alloy creep resistance T23 and T24 (7CrMoVTiB10-10) steels were developed for membrane waterwalls. Welding of these steels with small thickness (around...
Abstract
View Paper
PDF
The efficiency of power plants is depending on the steam temperature and/or the steam pressure. Efficiency increasing from 35% to 42-45% require increasing of the steam temperature over 600°C and the pressure over 26 MPa. According to the designer opinion it is not profitable to use classical low alloy creep resistant steels 16Mo3, 13CrMo4-5 or 10CrMo9-10 for membrane waterwall construction for these service condition. New modified low alloy creep resistance T23 and T24 (7CrMoVTiB10-10) steels were developed for membrane waterwalls. Welding of these steels with small thickness (around 6.3 mm) should be enabled without preheating and post weld heat treatment (PWHT) due to the lower carbon content below 0.1%. High creep rupture strength (CRS) values are achieved by Ti, N and B elements alloyed to T24 steel. The original expectation that the welding small thickness without preheating was early overcome and was wrong. According to the present experience the T24 steel is welded with preheating at 150-250°C depending on the wall thickness and welded joint toughness in order to achieve required hardness and impact toughness values. Opinions on the T24 welded joints post weld heat treatment (PWHT) requirements are still inconsistent. Especially the membrane waterwalls of the supercritical power plants are still produced without PWHT.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 549-564, October 22–25, 2013,
... practical considerations for handling this material (grade T24) from the perspective of both tubular component manufacturers and welding consumable producers. The paper is structured into three main sections: (1) Development and qualification of the T24 steel base material. (2) Development, qualification...
Abstract
View Paper
PDF
This paper explores the development and qualification of a bainitic-martensitic steel grade and its matching welding consumables for power plants operating under ultra-supercritical steam conditions (605/625°C and 300/80 bar). It provides insights into recent developments and offers practical considerations for handling this material (grade T24) from the perspective of both tubular component manufacturers and welding consumable producers. The paper is structured into three main sections: (1) Development and qualification of the T24 steel base material. (2) Development, qualification, and recommendations for welding consumables compatible with T24 steel. (3) Experiences during manufacturing and installation of components using T24 steel, concluding with key takeaways.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 948-952, October 21–24, 2019,
... Abstract Stress corrosion cracking (SCC) is a potential risk in structural steels used for steam boilers. To investigate the effect of dissolved oxygen (DO) on SCC susceptibility, three steels, T23, T24 and T91 were annealed at 1065°C and then quenched to create a susceptible microstructure...
Abstract
View Paper
PDF
Stress corrosion cracking (SCC) is a potential risk in structural steels used for steam boilers. To investigate the effect of dissolved oxygen (DO) on SCC susceptibility, three steels, T23, T24 and T91 were annealed at 1065°C and then quenched to create a susceptible microstructure and then exposed in a Jones test to stagnant and circulating water at 200°C with varying DO levels. The results indicated that among the tested steels, the SCC susceptibility was highest in T91 but lowest in T23 which did not exhibit crack initiation with 100 ppb DO. T24 showed no cracking with 50 ppb DO but cracked with 100 ppb DO under these conditions. Based on these results, the next planned step is to monitor crack growth in-situ and determine a critical DO content for each material.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
... of 2011 with the T24 grade steel [3], it is necessary to perform detailed investigation of the microstructure and properties of the steel applied in the boiler construction, butt (tube-tube) and fillet (tube-fin) welded joints in particular. Investigation on 12Cr2MoWVTiB steel, which is intended...
Abstract
View Paper
PDF
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
... Abstract The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one...
Abstract
View Paper
PDF
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1098-1112, October 11–14, 2016,
... treatment and the condition of the material on the SCC is analysed. 1 Introduction / Motivation T24 is a low alloyed heat resistant steel designed for use in membraned walls, supporting tubes, and superheater tubes in thermal power plants. The development of this steel was intended to achieve higher...
Abstract
View Paper
PDF
Starting in 2010 a new generation of coal fired power plants in Europe operating at a steam temperature of up 620°C was commissioned. During that commissioning process many cracks occurred in welds of T24 material which was extensively used as membrane wall material in nearly all of the new boilers. The cracks were caused by stress corrosion cracking (SCC) only occurring in the areas of the wall being in contact to high temperature water during operation. The question which step of the commissioning process really caused the cracking was not answered completely even several years after the damage occurred. To answer this question and to define parameters which will lead to cracking in high temperature water many tests were conducted. Generally it was found that slow tensile tests in controlled environment are well suited to get information about materials SCC sensitivity in the laboratory. In the present paper, first the influence of the cracking of welded T24 material in acidic environment containing well-defined amounts of H2S is investigated to address the question if a chemical cleaning process prior to the testing might lead to hydrogen induced SCC. As a second step, cracking behaviour in high temperature water is being investigated. Here the influence of the temperature, the oxygen concentration of the water, the deformation speed of the sample, the heat treatment and the condition of the material on the SCC is analysed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG...
Abstract
View Paper
PDF
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical...
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 565-572, October 22–25, 2013,
... of hydrogen related cracking. 571 REFERENCES [1] Arndt, J. et al, The T23/T24 Book, New Grades for Waterwalls and Superheaters, Vallourec and Mannesmann Tubes (1998), pp. 37-41. [2] Mohyla, P. and Foldyna, V., Improvement of reliability and creep resistance in advanced low alloy steels, J Mat Sci and Eng...
Abstract
View Paper
PDF
T24 tube material (7CrMoVTiB10-10), with its combination of high creep strength and potential to be welded without using preheat, is regarded as a candidate waterwall material for Ultra Supercritical (USC) boilers. However, its reputed sensitivity to hydrogen and potential for secondary hardening may have adverse impacts on construction of waterwall panels. Doosan Babcock Ltd have investigated the response of welds made in T24 tubing to secondary hardening via changing hardness in a series of ageing heat treatment trials. Also, the response of the material to hydrogen infusion has been investigated
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... steels welds [3]. Recently, cracking in welds of water wall panels made of Grade T24 steel has been reported in a number of newly constructed power plants in Europe. Cracking in T23 steel welds with similar 573 application has been experienced in the US. The nature of cracking in these instances has...
Abstract
View Paper
PDF
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 152-164, October 25–28, 2004,
... Abstract For plants with ultra critical steam conditions with live steam temperatures up to 720°C and pressure up to 300 bars optimized materials are required. These are a ferritic-bainitic material (T24) for applications up to 550°C, modified 9 Cr steels (E911 and P92), a new Co-alloyed...
Abstract
View Paper
PDF
For plants with ultra critical steam conditions with live steam temperatures up to 720°C and pressure up to 300 bars optimized materials are required. These are a ferritic-bainitic material (T24) for applications up to 550°C, modified 9 Cr steels (E911 and P92), a new Co-alloyed martensitic 12 Cr steel for usage up to 630°C and Nickel based alloys (Alloy 617) for temperatures above 650°C. Experimental work has been done to create a reliable data base for design and inspection. Special emphasis was put on long term creep characteristics of base material with specific consideration of cross welds, microstructural investigations with regard to optimization of chemical composition and heat treatment and numerical modeling.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 74-85, October 22–25, 2013,
... a screening program with base materials T24, T92, A316, Sanicro 25, S304H, TP347HFG, A617, A263 and A740H, coated and uncoated, with and without deposits and under different gas environments in a temperature range of 600 800°C. The tests were carried out in a furnace (Fig. 1). Different coatings are applied...
Abstract
View Paper
PDF
The EU NextGenPower-project aims at demonstrating Ni-alloys and coatings for application in high-efficiency power plants. Fireside corrosion lab and plants trials show that A263 and A617 perform similar while A740H outperforms them. Lab tests showed promising results for NiCr, Diamalloy3006 and SHS9172 coatings. Probe trials in six plants are ongoing. A617, A740H and A263 performed equally in steamside oxidation lab test ≤750°C while A617 and A740H outperformed A263 at 800°C; high pressure tests are planned. Slow strain rate testing confirmed relaxation cracking of A263. A creep-fatigue interaction test program for A263 includes LCF tests. Negative creep of A263 is researched with gleeble tests. A263 Ø80 - 500mm trial rotors are forged with optimized composition. Studies for designing and optimizing the forging process were done. Segregation free Ø300 and 1,000mm rotors have been forged. A263 – A263 and A293 – COST F rotor welding show promising results (A263 in precipitation hardened condition). Cast step blocks of A282, A263 and A740H showed volumetric cracking after heat treatment. New ‘as cast’ blocks of optimized composition are without cracks. A 750°C steam cycle has been designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, xxxvi-xxxvii, October 25–28, 2004,
... higher temperatures Nickel-base alloys mentioned earlier are being considered. For upper waterwall sections in the boiler, two new steels containing 2.5Cr, known as HCM2 (T23) and 7CrMoVTiB1010 (T24) and a 12%Cr steel HCM12, respectively, are very promising in terms of creep strength and weldability...
Abstract
View Paper
PDF
Preface for the 2004 Advances in Materials Technology for Fossil Power Plants conference.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
...., low-temperature Toughening mechanism in thermomechanically processed high-strength low-alloy steels, Metall. Mater. Trans. A, Vol. 42, (2011), pp. 717-728. [19] Zieli ski, A, Gola ski, G, Sroka M., Influence of long-term ageing on the microstructure and mechanical properties of T24 steel, Materials...
Abstract
View Paper
PDF
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 525-536, October 22–25, 2013,
... the swage replacement was completed during the 2011 overhaul. 535 Research by VGB, EON, and RWE in Europe [4] has shown the critical effect of dissolved oxygen in promoting anodic-type SCC in high quality water for similar Grade T24 material, especially in the temperature range of 200oC (400oF) to 250oC...
Abstract
View Paper
PDF
Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress-corrosion cracking (SCC), and a lesser number of fabrication-related hydrogen induced cracking (HIC), weld solidification cracking, and brittle cracking within tube swage sections were also experienced. Hundreds of tubes were replaced prior to Unit commissioning, due to both actual tube leaks and those replaced due to weldment cracking and other identified weld defects during radiographic testing. Elevated stress levels and material susceptibility (i.e. hardness in the as-welded condition) were considered the critical factors in the tube cracking.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
... is then constantly investigating new nickel based materials (for instance Alloy 617 or Alloy 625), martensitic steels as VM12 and P92 and ferritic steels as 7CrMoVTiB10-10 (T24) which are planned to be used for components in this power plant. Previous investigations show that above 650°C (see figure 1.1) Nickel...
Abstract
View Paper
PDF
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 669-677, October 15–18, 2024,
... Mater, vol. 10, No. 2 (2011), pp. 123 128. [7] N. Abu-warda, A. J. López, M. D. López, and M. V. Utrilla, Ni20Cr coating on T24 steel pipes by HVOF thermal spray for high-temperature protection, Surface and Coatings Technology, vol. 381 (2020), p. 125133. [8] M. Wang, X. Cheng, W. Jiang, T. Cao, X...
Abstract
View Paper
PDF
This presentation compares the corrosion resistance of uncoated Haynes 230 and SS316HS substrates to the same substrates coated with a Fe-based amorphous alloy. The substrates were exposed to highly corrosive media, FLiNaK, for 120 hours at 700 °C. The findings indicate that the thermal spray amorphous alloy coating provided superior corrosion resistance within the coatings while protecting the substrates against the aggressive environment. As a result, the new amorphous metal coating improved the substrate's lifespan by providing better protection against high-temperature corrosion, paving the way for a more efficient and cost-effective future in various industrial applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
... of advanced bainitic steels such as T23 and T24 are also a concern [3]. The second concern is corrosion. Recent results in the US on boilers retrofitted with low NOx burner systems, using overfire air, indicate that the present low alloy steels can suffer from excessive corrosion, as high as 2 mm/yr. Weldable...
Abstract
View Paper
PDF
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 336-346, October 11–14, 2016,
... commissioning period in 2013. The pipes had the dimensions 60mm OD , 5 mm wall thickness and were welded by the TIG process. Before start up, and during post weld heat treatment (PWHT, 560°C 60h) by compressed hot air of the adjacent T24 evaporator pipe system, the welded super heater HR3C pipe bundles were...
Abstract
View Paper
PDF
The mechanisms of recent cracking failures of HR3C super heater pipes of a fossil power plant in the Netherlands were investigated. Initial failure investigations showed that pitting corrosion of the sensitized HR3C initiated subsequent stress corrosion cracking (SCC). It was concluded that magnesium chloride hydrates from condensed seawater had initiated pitting corrosion as well as SCC similar to the standard ASTM G36 SCC test. By experimental application of the ASTM G36 procedure, this tentative mechanism is reproduced and confirmed by a series of laboratory tests with pure magnesium chloride as well as with synthetic seawater. It included the effects of temperature, magnesium chloride concentrations of the evaporating water and applied bending moments on cracking. As a result for the 175h testing period in MgCl2*6H 2 O cracking increases significantly above 100°C up to 120°C but is reduced slightly at temperatures up to 155°C. With increasing bending moments, the U-shaped test pieces revealed increasing crack depths up to total fracture of the 5mm thick sections. Lower magnesium chloride concentrations as in concentrated seawater provided identical cracking, however, to a lower extent. It is therefore concluded that the operational failure of the sensitized HR3C super heater pipes was initiated in presence of condensed seawater and followed the same mechanism as found in the experimental investigation. As a conclusion, the presence of seawater saturated air at temperatures between 100° and 155°C should be avoided.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1-8, October 22–25, 2013,
... plan. Currently the characteristics tests and assessment work on foreign materials, such as 617M 740 740H high temperature alloys and T24 ferrite steel, etc., are in progress. 3) Sub-topic 3: Research on boiler key technology This sub-topic will develop the fundamental engineering and manufacturing...
Abstract
View Paper
PDF
This paper presents an overview of China’s electric power development and the National 700°C Ultra-Supercritical (USC) Coal-Fired Power Generation Technology Innovation Consortium. Besides, the R&D plan and latest progress of China 700°C USC coal-fired power generation technology is also introduced in this paper.
1