Skip Nav Destination
Close Modal
Search Results for
SAVE12AD tubes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Search Results for SAVE12AD tubes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 931-938, October 11–14, 2016,
... Abstract Developed 9Cr-3W-3Co-Nd-B heat-resistant steel SAVE12AD (Recently designated as ASME Grade 93) pipes and tubes have higher creep strength in both base metal and welded joints than conventional high Cr ferritic steels such as ASME Grades 91, 92 and 122. The welded joints of SAVE12AD...
Abstract
View Papertitled, Property of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel <span class="search-highlight">SAVE12AD</span> Welded Joint
View
PDF
for content titled, Property of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel <span class="search-highlight">SAVE12AD</span> Welded Joint
Developed 9Cr-3W-3Co-Nd-B heat-resistant steel SAVE12AD (Recently designated as ASME Grade 93) pipes and tubes have higher creep strength in both base metal and welded joints than conventional high Cr ferritic steels such as ASME Grades 91, 92 and 122. The welded joints of SAVE12AD tubes with commercial filler wire for W62-10CMWV-Co (Gr. 92) or Ni base filler wire ERNiCr-3 (Alloy82) also have much better creep rupture strength than those of conventional steels because of suppression of refining in the Heat-Affected-Zone (HAZ). However, the creep rupture strength of weld metal of W62-10CMWV-Co was marginal. Additionally, the hot cracking susceptibility of weld metal using Ni base filler wire ERNiCr-3 was occasionally below the required level. Similar welding consumable for SAVE12AD has been developed to solve these problems. Optimization of nickel, neodymium and boron contents on similar welding consumable enables to obtain both the good long-term creep rupture strength and low enough hot cracking susceptibility of weld metal. Consequently, SAVE12AD welded joint is expected to be applied of piping and tubing above 600°C in USC power plants because of its good properties with similar welding consumable.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1047-1058, October 22–25, 2013,
.... Tubes of SAVE12AD (ferritic steel), Alloy 263, HR6W, HR35 and Alloy 617 were bent. The radii of the bending tests are 1.7 DR and 2.8 DR. Figure 4 shows the samples after a bending test. All materials were able to be bent in this test. Figure 5 shows the results of PT tests for the samples. There were...
Abstract
View Papertitled, Development of Welding and Fabrication Technologies in Advanced USC Boiler
View
PDF
for content titled, Development of Welding and Fabrication Technologies in Advanced USC Boiler
Welding processes and fabrication techniques have been studied in the development of Advanced USC boilers. Advanced 9Cr steels, Fe-Ni alloy (HR6W) and Nickel base alloys (HR35, Alloy 617, Alloy 263, Alloy 740 and Alloy 740H) have been selected as candidate materials for the boiler. The weld joints of these alloys were prepared from plates, small diameter tubes and large pipes, and welding procedure tests were performed. In this study, TIG and SMAW were applied. Both welding process produced good weld joints, and they showed good results in bending tests, tensile tests and the Charpy impact test. To select the annealing conditions for stress relief, stress relaxation tests and hardness tests were conducted on the weld joints after various heat treatments. The microstructure was also evaluated by SEM and TEM. Creep rupture tests are being performed for the weld joints with and without heat treatment. The maximum creep rupture tests are expected to take over 100,000 hours. In the study of fabrication techniques, hot bending tests by high frequency induction heating for large pipes and cold/hot bending tests for small diameter tubes were established. After the bending tests, mechanical property tests such as tensile tests, impact tests and creep rupture tests were conducted. The effect of pre-strain on creep strength was studied to take the creep test results after bending into consideration. The creep rupture test will be continued for specimens from weld joints and bending pipes to show their long term reliability.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 326-335, October 11–14, 2016,
... thickness are not too thick, inwall has excellent steam oxidation resistance, header material has good welding performance and good toughness, linear expansion coefficient are not too large, and so on. Nippon develop SAVE12AD-high strength martensitic steel, which has been approved by ASME, and can be used...
Abstract
View Papertitled, Research on HR6W Manufactured Reheater Outlet Header of the Advanced USC Boiler
View
PDF
for content titled, Research on HR6W Manufactured Reheater Outlet Header of the Advanced USC Boiler
This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable temperature range of the material. As a result, HR6W is the appropriate material to manufacture high temperature reheater outlet header of A-USC boiler with parameters 620°C /653°C/653°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
... Material Grade 91/92 Haynes 282 HR6W Inconel 617 Inconel 740H Sanicro 25 SAVE12AD TP347H and Super 304H Component Area Used membrane panels tubes, castings, forgings tubes, pipe/header safe ends on various tubing tubes, pipes, forgings tubes pipe/header lower temperature zones The project team structure...
Abstract
View Papertitled, Update on United States Advanced Ultra-Supercritical Component Test Project for 760 °C Steam Conditions
View
PDF
for content titled, Update on United States Advanced Ultra-Supercritical Component Test Project for 760 °C Steam Conditions
Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC ComTest) to help achieve technical readiness to allow the construction of a commercial scale A-USC demonstration power plant. Among the goals of the ComTest project are to validate that components made from the advanced alloys can be designed and fabricated to perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for key A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. This project is intended to bring A-USC technology to the commercial scale demonstration level of readiness by completing the manufacturing R&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar (3500 psia).The A-USC ComTest project scope includes fabrication of full scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office under a prime contract with the Energy Industries of Ohio, with co-funding from the power industry participants, General Electric, and the Electric Power Research Institute, has completed the detailed engineering phase of the A-USC ComTest project, and is currently engaged in the procurement and fabrication phase of the work. This paper will outline the motivation for the effort, summarize work completed to date, and detail future plans for the remainder of the A-USC ComTest project.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 86-95, August 31–September 3, 2010,
...: Superheater tubes VM12SHC Super 304H (SB) XA704 (SB) NF 709 HR6W A617 mod. HR3C HR35 A617 mod. SAVE12AD DMV 304HCu (SB) HR3C Tempaloy A3 HR35 Sanicro 25 HN55 A263 Table3: Creep test loop materials Creep test loop / 635°C T92 DMV 310N Creep test loop / 725°C HR35 A263 Save 12AD Sanicro 25 A617 mod. A740 DMV...
Abstract
View Papertitled, GKM Test Rig: Investigation of the Long Term Operation Behavior of <span class="search-highlight">Tubes</span> and Forgings Made of Alloys for Future High Efficient Power Plants
View
PDF
for content titled, GKM Test Rig: Investigation of the Long Term Operation Behavior of <span class="search-highlight">Tubes</span> and Forgings Made of Alloys for Future High Efficient Power Plants
This paper introduces the GKM (Grosskraftwerk Mannheim AG) test rig, designed to evaluate new Ni-based alloys and austenitic steels for components in advanced 700°C power plants under real operational conditions. The test rig, integrated into a conventional coal-fired power plant in Mannheim, Germany, simulates extreme conditions of up to 725°C and 350/200 bar pressure. After approximately 2000 hours of operation, the paper presents an overview of the rig's design, its integration into the existing plant, and the status of ongoing tests. It also outlines parallel material investigations, including creep rupture tests, mechanical-technological testing, and metallurgical characterization. This research is crucial for the development of materials capable of withstanding the severe conditions in next-generation power plants, potentially improving efficiency and performance in future energy production.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... Abstract Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering...
Abstract
View Papertitled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
View
PDF
for content titled, Transformation Behavior of Weld Metal for CSEF Steels during Intercritical Post-weld Heat Treatment and the Impact on Mechanical Properties
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 24-40, October 22–25, 2013,
... were cut out from the welded portion of pipes into long term creep rupture test. Some advanced 9Cr steels were also tested. Figure 20 shows the cross section of welded SAVE12AD pipe and a bended pipe. In the HAZ section of welds, we didn t find any small grain structure. 33 Some header mock-ups were...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
We have reported on the effort being done to develop the A-USC technology in Japan, which features the 700 deg-C steam condition, since the 2007 EPRI conference. Our 9 year project began in 2008. There have been some major changes in the electricity power market in the world recently. At first, the earthquake changed the power system violently in Japan. Almost all nuclear power plants have been shut down and natural gas, oil and coal power plants are working fully to satisfy the market's demands. In the USA, the so called ‘Shale gas revolution’ is going on. In Europe, they are working toward the target of reducing CO 2 emissions by the significant use of renewables with the backup of the fossil fuel power systems and enhancing power grids. A very rapid increase in power generation by coal is being observed in some countries. Despite some major changes in the electric sector in the world and the CO 2 problem, the global need for coal power generation is still high. We can reconfirm that the improvement of the thermal efficiency of coal power plants should be the most fundamental and important measure for the issues we are confronting today, and that continuous effort should be put towards it. Based on the study we showed at the 2007 conference, we developed 700 deg-C class technology mainly focusing on the material and manufacturing technology development and verification tests for key components such as boilers, turbines and valves. Fundamental technology developments have been done during the first half of the project term. Long term material tests such as creep rupture of base materials and welds will be conducted for 100,000hrs continuing after the end of the project with the joint effort of each participating company. Today, we are preparing the plan for the second half of the project, which is made up of boiler components test and the turbine rotating tests. Some boiler superheater panels, large diameter pipes and valves will be tested in a commercially operating boiler from 2015 to 2017. The turbine rotor materials which have the same diameter as commercial rotors will be tested at 700 deg-C and at actual speed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 325-341, August 31–September 3, 2010,
... and Work Shear HR6W HR35 Alloy617 Alloy263 Alloy740 Equiv. Equiv. Equiv. B-9Cr SAVE12AD LC-9Cr Alloy141 Equiv. Figure 3-10 Boiler Candidate Materials (Courtesy of Sumitomo Metal Industries) Figure 3-10 shows the candidate materials for boilers. HR6W is a Ni-Fe based alloy and HR35, Alloy 617, Alloy263...
Abstract
View Papertitled, Advanced USC Technology Development in Japan
View
PDF
for content titled, Advanced USC Technology Development in Japan
The “Cool Earth-Innovative Energy Technology Program,” launched by the Japanese government in March 2008, aims to significantly reduce global greenhouse gas emissions. Among the 21 selected technologies is the Advanced Ultra Super Critical (A-USC) pressure power generation, which targets the commercialization of a 700°C class pulverized coal power system with a power generation efficiency of 46% by around 2015. As of 2004, Japan's pulverized coal power plant capacity reached 35 GW, with the latest plants achieving a steam temperature of 600°C and a net thermal efficiency of approximately 42% (HHV). Older plants from the 1970s and early 1980s, with steam temperatures of 538°C or 566°C, are nearing the need for refurbishment or rebuilding. A case study on retrofitting these older plants with A-USC technology, which uses a 700°C class steam temperature, demonstrated that this technology is suitable for such upgrades and can reduce CO 2 emissions by about 15%. Following this study, a large-scale development of A-USC technology began in August 2008, focusing on developing 700°C class boiler, turbine, and valve technologies, including high-temperature material technology. Candidate materials for boilers and turbine rotor and casing materials are being developed and tested. Two years into the project, useful test results regarding these candidate materials have been obtained, contributing to the advancement of A-USC technology.