Skip Nav Destination
Close Modal
Search Results for
M23C6 carbides
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 171
Search Results for M23C6 carbides
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 760-765, February 25–28, 2025,
... and after creep test. 762 Relative frequency / % 30 PWHT 1000 h 20 2000 h 3000 h 10 0 15 30 45 Misorientation / 60 Figure 3: Changes of relative frequency of misorientation during creep test. Since carbides (mainly M23C6 carbides) on grain boundaries are strongly involved in the behavior of ferrite...
Abstract
View Papertitled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
View
PDF
for content titled, Creep Strength and Microstructure in Welded Joints of ASME Grade 91 Type 1 and Type 2 Steels
In this study, the creep strength of welded joints of Grade 91 Type 1 and Type 2 steels was evaluated. It was determined that impurity elements in the Type 1 steel reduced its creep strength. This reduction was attributed to an increase in the amount of residual carbides in the fine-grain heat-affected zone during welding.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 478-485, October 11–14, 2016,
... of the tempered martensite lath structure into relatively coarse subgrain structure. The formation of a well-defined subgrain structure in the gage and neck sections was accompanied by the coarsening of M23C6 carbides and precipitations of Laves phase during creep. Mechanisms of grain boundary pinning...
Abstract
View Papertitled, Structural Changes in P92-Type Martensitic Steel During Creep at 600°C
View
PDF
for content titled, Structural Changes in P92-Type Martensitic Steel During Creep at 600°C
Structural changes in P92-type steel after creep at temperature of 600°C under a stress of 140 MPa were investigated. The steel was solution treated at 1050°C and tempered at 780°C. The structure in the grip portion of the creep specimen changed scarcely after creep exposure for 6876 h. In contrast, the structural changes in the gage and neck sections were characterized by transformation of the tempered martensite lath structure into relatively coarse subgrain structure. The formation of a well-defined subgrain structure in the gage and neck sections was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase during creep. Mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 962-973, October 11–14, 2016,
... of the relationship between the creep properties of MarBN weld filler metal and its corresponding microstructural changes during creep tests and exposure to high temperatures. The distribution and quantity of M23C6 carbides and fine MX-type carbonitrides in the martensitic matrix are very effective...
Abstract
View Papertitled, Microstructural Characterisation of Creep Tested 9Cr Welds for MarBN Steel
View
PDF
for content titled, Microstructural Characterisation of Creep Tested 9Cr Welds for MarBN Steel
Creep properties of 9Cr heat resistant steels can be improved by the addition of boron and nitrogen to produce martensitic boron-nitrogen strengthened steels (MarBN). The joining of this material is a crucial consideration in the material design since welds can introduce relatively weak points in the structural material. In the present study, creep tests of a number of MarBN weld filler metals have been carried out to determine the effect of chemistry on the creep life of weld metal. The creep life of the weld metals was analysed, and the evolution of creep damage was investigated. Significant differences in the rupture life during creep have been observed as a function of boron, nitrogen and molybdenum concentrations in the weld consumable composition. Although the creep lives differed, the particle size and number in the failed creep tested specimens were similar, which indicates that there is a possible critical point for MarBN weld filler metal creep failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 592-602, October 21–24, 2019,
... than the current 600°C-level Ultra Super Critical (USC) plants [8]. One of the candidate materials, 47Ni-23Cr-23Fe-7W alloy (HR6W), exhibits excellent creep rupture strength even at 700°C by precipitation strengthening of Laves phase and M23C6 carbides. It also has high-temperature ductility...
Abstract
View Papertitled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
View
PDF
for content titled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
In order to establish a creep damage assessment method for 47Ni-23Cr-23Fe-7W (HR6W), which is a candidate material of A-USC, microstructure observation of creep interrupted specimens and ruptured specimen was conducted, and the creep damage process was examined. Creep tests were conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain boundaries from about 0.35 of creep life ratio, and crack ratio increased drastically after creep life ratio of 0.65. This crack ratio was almost the same regardless of the specimen shape Therefore, the method to assess crack ratio using replicas is considered to be an effective method for creep damage assessment of HR6W. An increase in the crack ratio due to an increase in creep life ratio showed the same trend as the change in elongation of creep interrupted specimens. Microstructure observations were conducted with interrupted specimens using SEM-ECCI (Electron Channeling Contrast Imaging) in order to clarify the cause of acceleration creep. The results showed that sub-boundary developed significantly near grain boundaries, which indicates that sub-boundary development may cause acceleration.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 13-22, February 25–28, 2025,
... be kept fine and dense, 2) grain boundaries should be sufficiently covered by M23C6 carbide by increasing its phase fraction, and 3) tertiary ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate...
Abstract
View Papertitled, The Role of Heat Treatment on Creep Rupture Ductility and its Underlying Metallurgical Mechanism of Forged Ni-based Superalloy
View
PDF
for content titled, The Role of Heat Treatment on Creep Rupture Ductility and its Underlying Metallurgical Mechanism of Forged Ni-based Superalloy
For the safe operation of high temperature equipment, it is necessary to ensure creep rupture ductility of the components from the viewpoint of notch weakening. In this study, the effect of heat treatment conditions on creep rupture ductility was evaluated and its underlying metallurgical mechanism was investigated with using a forged Ni-based superalloy Udimet520. In order to improve the creep rupture ductility without lowering the creep rupture strength, it is important to increase both intragranular strength and intergranular strength in a balanced manner. For this purpose, it was clarified that 1) secondary γ' phase within grains should be kept fine and dense, 2) grain boundaries should be sufficiently covered by M 23 C 6 carbide by increasing its phase fraction, and 3) tertiary γ' phase within grains should be redissolved before the start of creep. To obtain such a precipitate state, it is essential to appropriately select the cooling rate after solution treatment, stabilizing treatment and aging treatment conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1340-1350, October 21–24, 2019,
...-existing creep voids in the creep aged parent material and the large M23C6 carbides (Ø > 300 nm) in the FGHAZ after welding are proposed as the main microstructural contributions that could accelerate Type IV failure on the creep aged side of TMF steel weldments. Keywords: TMF steels, FGHAZ, welding...
Abstract
View Papertitled, Microstructural Evolution of a Creep Aged Tempered Martensitic Ferritic Steel during Welding
View
PDF
for content titled, Microstructural Evolution of a Creep Aged Tempered Martensitic Ferritic Steel during Welding
The present study presents a detailed investigation on the evolution of the microstructure during welding on virgin and long-term service exposed (creep aged 1 = 535°C; 16.1 MPa; 156 kh and creep aged 2 = 555°C; 17.0 MPa; 130 kh) 12% Cr (X20CrMoV11-1) martensitic steel. This study was carried out in order to understand the impact of welding on prior creep exposed Tempered martensite ferritic (TMF) steel and to explain the preferential failure of weldments in the fine grained heat affected zone (FGHAZ) of the creep aged material side instead of the new material side. Gleeble simulation (Tp = 980°C; heating rate = 200 °C/s; holding time = 4 seconds) of the FGHAZ was performed on the materials to create homogeneous microstructures for the investigation. Quantitative microstructural investigations were conducted on the parent plate and simulated FGHAZ materials using advanced electron microscopy to quantify: a) voids, b) dislocation density, c) sub-grains, and d) precipitates (M 23 C 6 , MX, Laves, Z-phase) in the materials. Semi-automated image analysis was performed using the image analysis software MIPARTM. The pre-existing creep voids in the creep aged parent material and the large M 23 C 6 carbides (Ø > 300 nm) in the FGHAZ after welding are proposed as the main microstructural contributions that could accelerate Type IV failure on the creep aged side of TMF steel weldments.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M23C6 carbides and retarding the transition from M23C6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement...
Abstract
View Papertitled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 949-961, August 31–September 3, 2010,
... and large grain boundary M23C6 carbides with a few GB laves phase particles. On some grain boundaries, the M23C6 carbides have started to link together covering the whole grain boundary. Sigma phase is very difficult to nucleate at this temperature. Fig. 1b shows the inter-granular semi-ductile fracture...
Abstract
View Papertitled, Prediction of Microstructural Evolution in Austenitic Stainless Steels for Extended Life Power Plant Applications
View
PDF
for content titled, Prediction of Microstructural Evolution in Austenitic Stainless Steels for Extended Life Power Plant Applications
This study investigates the microstructure evolution of Type 316H stainless steel, focusing on the identification of major precipitates using advanced characterization techniques. The precipitation sequence at service temperatures of 650°C is identified as M 23 C 6 , followed by Laves phase, grain boundary (GB) sigma phase, and inter-granular sigma phase. At 750°C, the sequence progresses from M 23 C 6 to Laves phase, GB sigma phase, chi phase, and intra-granular sigma phase, with the chi phase forming intra- and inter-granularly after 5,000 hours of aging. During the formation of the sigma and chi phases, carbides and Laves phases dissolve. A Monte Carlo model has been developed to predict detailed microstructure evolution during long-term aging, calibrated using quantitative precipitate evolution measurements of Type 316H. After validation, the model aligns well with experimental data, offering a method to predict the microstructure of Type 316H and potentially other austenitic stainless steels over the lifespan of power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
... was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M23C6-type carbide particles with an average size of about 105 nm...
Abstract
View Papertitled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
View
PDF
for content titled, Microstructural Changes in GX12CRMOWVNBN10-1-1 Steel During Creep at 893 K
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 217-226, October 21–24, 2019,
... tempered martensite lath structure with the mean size of prior austenite grains of 59 m and with high dislocation density (2×1014 m-2) within martensitic laths. Boundary M23C6 and M6C carbides and randomly distributed within matrix Nb-rich MX carbonitrides were detected after final heat treatment...
Abstract
View Papertitled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
View
PDF
for content titled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
9-10%Cr-3%Co martensitic steels are the prospective materials for elements of boilers, tubes and pipes for fossil power plants which are able to work at ultra-supercritical parameters of steam (T=620-650°C, P=25-30 MPa). The effect of creep on the microstructure of the 10 wt.%Cr-3Co- 3W-0.2Re martensitic steel was investigated in the condition of 650°C and an applied stress of 140 MPa, time to rupture was more than 8500 h. Previously, this steel was subjected to the normalizing at 1050°C and tempering at 770°C. This heat treatment provided the hierarchical tempered martensite lath structure with the mean size of prior austenite grains of 59 μm and with high dislocation density (2×10 14 m -2 ) within martensitic laths. Boundary M 23 C 6 and M 6 C carbides and randomly distributed within matrix Nb-rich MX carbonitrides were detected after final heat treatment. The addition of Re in the steel studied positively affected creep at 650°C/140 MPa and stabilized the tempered martensite lath structure formed during 770°C-tempering. The formation of the subgrains in the gage section was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase with fine sizes during creep. No depletion of Re and Co from the solid solution during creep was revealed whereas W content decreased from 3 to 1 wt.% for first 500 h of creep. Reasons of improved creep as well as mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1363-1371, October 22–25, 2013,
... the disadvantage of premature failure in long-term creep [1,2]. Thus, accurate estimation of the long-term creep rupture life of the materials is required. The microstructure of high chromium heat resistant ferritic steels consists of the martensite phase as the matrix containing MX carbonitride, M23C6 carbide...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of 9Cr Heat Resistant Ferritic Steel Containing Boron with the Aid of System Free Energy Concept
Prediction of long-term creep strength is an important issue for industrial plants operated at elevated temperatures, although the creep strength of high Cr ferritic steels depends on their microstructural evolution during creep. The state of microstructure in metallic materials can be expressed as numerical values based on a concept of system free energy. In this study, in order to evaluate long term creep strength of 9Cr ferritic steel containing B, change in the system free energy during creep of the steel is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. The system free energy decreases with creep time. Change in the energy is expressed quantitatively as a numerical formula using the rate constants which depend on applied stress. On the basis of these facts, long term creep strength of the steel can be evaluated at both 948K(675°C) and 973K(700 °C).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
... steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M23C6 and Fe3W3C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed...
Abstract
View Papertitled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
View
PDF
for content titled, On the Precipitation of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... 617B in as-welded condition, after 1127 PWHT at 980 °C and after creep loading was investigated in the area of base material (BM) and weld metal (WM) [9]. In the as-welded condition, only few M23C6 carbides are found both in the BM and in the WM within the grain and isolated at the grain boundaries...
Abstract
View Papertitled, Creep and Failure Behavior of Welded Joints Made of Alloy 617B
View
PDF
for content titled, Creep and Failure Behavior of Welded Joints Made of Alloy 617B
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... of solution-annealed and aged treatment is shown in Figure 2. The morphologies of in the grain and M23C6 at grain boundary of alloy 740H are shown in Figure 3. Microstructure of the alloy indicates that carbides precipitated in the matrix and at grain boundaries. The particles distributed in the matrix...
Abstract
View Papertitled, Microstructure Evolution and Precipitates Stability in Inconel Alloy 740H during Creep
View
PDF
for content titled, Microstructure Evolution and Precipitates Stability in Inconel Alloy 740H during Creep
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 479-487, October 21–24, 2019,
..., precipitation of M23C6 carbides was observed in both grain boundaries and the grain interior prior to the creep tests. Grain boundary coverage by carbide increased with phosphorus content up to approximately 30 ppm. On the other hand, the amount of M23C6 in the grain interior decreased with phosphorus content...
Abstract
View Papertitled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
View
PDF
for content titled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
In this work, the effects of phosphorus addition on the creep properties and microstructural changes of wrought γ’-strengthened Ni-based superalloys (Haynes 282) were investigated, focusing on the effects of carbides precipitation. In an alloy with a phosphorus content of 8 ppm, precipitation of M 23 C 6 carbides was observed in both grain boundaries and the grain interior prior to the creep tests. Grain boundary coverage by carbide increased with phosphorus content up to approximately 30 ppm. On the other hand, the amount of M 23 C 6 in the grain interior decreased with phosphorus content. The results of the creep tests revealed the relationship between the time to rupture and the grain boundary coverage by carbides. The microstructure of the crept specimens showed the existence of misorientation at the vicinity of grain boundaries without carbides, as demonstrated via electron backscattered diffraction (EBSD) analysis. These results suggest that the observed improvement in the time to rupture is due to a grain-boundary precipitation strengthening mechanism caused by grain boundary carbides and that phosphorus content affects the precipitation behavior of M 23 C 6 carbides in the grain interior and grain boundaries. These behaviors were different between alloys with the single addition of phosphorus and alloys with the multiple addition of phosphorus and niobium.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 92-106, October 3–5, 2007,
... the onset of acceleration creep takes place at earlier times in the high nitrogen steels (Fig. 2(a We have revealed that in the 0.0034N steel with 140 ppm boron, the fine distribution of M23C6 carbides along prior grain boundaries (PAGBs) is still maintained during exposure at 650oC and that boron...
Abstract
View Papertitled, Feasibility of MARBN Steel for Application to Thick Section Boiler Components in USC Power Plant at 650 °C
View
PDF
for content titled, Feasibility of MARBN Steel for Application to Thick Section Boiler Components in USC Power Plant at 650 °C
A 9Cr-3W-3Co-VNbBN steel, designated MARBN ( MAR tensitic 9Cr steel strengthened by B oron and N itrides), has been alloy-designed and subjected to long-term creep and oxidation tests for application to thick section boiler components in USC power plant at 650 o C. The stabilization of lath martensitic microstructure in the vicinity of prior austenite grain boundaries (PAGBs) is essential for the improvement of long-term creep strength. This can be achieved by the combined addition of 140ppm boron and 80ppm nitrogen without any formation of boron nitrides during normalizing at high temperature. The addition of small amount of boron reduces the rate of Ostwald ripening of M 23 C 6 carbides in the vicinity of PAGBs during creep, resulting in stabilization of martensitic microstructure. The stabilization of martensitic microstructure retards the onset of acceleration creep, resulting in a decrease in minimum creep rate and an increase in creep life. The addition of small amount of nitrogen causes the precipitation of fine MX, which further decreases the creep rates in the transient region. The addition of boron also suppresses the Type IV creep-fracture in welded joints by suppressing grain refinement in heat affected zone. The formation of protective Cr 2 O 3 scale is achieved on the surface of 9Cr steel by several methods, such as pre-oxidation treatment in Ar gas, Cr shot-peening and coating of thin layer of Ni-Cr alloy, which significantly improves the oxidation resistance of 9Cr steel in steam at 650 o C. Production of a large diameter and thick section pipe and also fabrication of welds of the pipe have successfully been performed from a 3 ton ingot of MARBN.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 486-493, October 11–14, 2016,
... of the premature failure is the microstructural instability of the steels during creep, because they have a complicated microstructure consisting of the martensite phase as the matrix containing MX carbonitride, M23C6 carbide, Z phase, etc. Since the creep strength of high chromium heat resistant ferritic steels...
Abstract
View Papertitled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
View
PDF
for content titled, Evaluation of Long Term Creep Strength of Mod. 9Cr Heat Resistant Ferritic Steel with the Aid of System Free Energy Concept
In order to evaluate long term creep strength of modified 9Cr ferritic steels, the system free energy of creep ruptured specimens at both 650 and 700 °C is evaluated as the sum of chemical free energy, strain energy and surface energy, which are obtained by a series of experiments, i.e., chemical analysis using extracted residues, X-ray diffraction, and scanning transmission electron microscopy. Change ratio of the system free energy and creep stress showed the relationship with one master curve irrespective of creep conditions, indicating that the steel ruptures when the applied stress exceeds a limited stress depending on the microstructural state expressed by the change ratio of system free energy. Furthermore, it was found that dominant factor of the change ratio was the chemical free energy change. On the basis of these results, long term creep strength of the steel was evaluated at 700 °C, for example, 19MPa at 700 °C after 10 5 h. It is concluded that long term creep strength of modified 9Cr ferritic steels can be predicted by the system free energy concept using the ruptured specimens with various creep conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1067-1074, October 11–14, 2016,
... whereas the rapid acceleration of creep rate took place only at the short second stage of tertiary creep. Transition from minimum creep rate stage to tertiary creep was found to be accompanied by coarsening of Laves phase particles, whereas M23C6 type carbides demonstrated high coarsening resistance...
Abstract
View Papertitled, Long-Term Microstructural Evolution in a 10%Cr High Creep Resistant Martensitic Steel at 650°C
View
PDF
for content titled, Long-Term Microstructural Evolution in a 10%Cr High Creep Resistant Martensitic Steel at 650°C
A 10%Cr martensitic steel with 3%Co and 0.008%B exhibits extremely long creep rupture time of approximately 40000 h under an applied stress of 120 MPa at a temperature of 650°C. The steel’s microstructure after creep tests interrupted at different creep stages was examined by transmission and scanning electron microscopy. It was shown that superior creep resistance of this steel was attributed to slow increase in creep rate at the first stage of tertiary creep whereas the rapid acceleration of creep rate took place only at the short second stage of tertiary creep. Transition from minimum creep rate stage to tertiary creep was found to be accompanied by coarsening of Laves phase particles, whereas M 23 C 6 – type carbides demonstrated high coarsening resistance under creep condition. Strain-induced formation of Z-phase does not affect the creep strength under applied stress of 120 MPa due to nanoscale size of Z-phase particles.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 620-639, August 31–September 3, 2010,
... along boundaries. The addition of boron reduces the coarsening rate of M23C6 carbides along boundaries near prior austenite grain boundaries during creep. The enhancement of boundary and sub-boundary hardening increases the tm and decreases the & min, which improves the creep life. The boundary and sub...
Abstract
View Papertitled, Creep Deformation Behavior and Alloy Design Philosophy of Creep-Resistant Tempered Martensitic 9Cr Steel
View
PDF
for content titled, Creep Deformation Behavior and Alloy Design Philosophy of Creep-Resistant Tempered Martensitic 9Cr Steel
In advanced ultra-supercritical (A-USC) power plants, which operate at steam temperatures of 700 °C or higher, there is a need to replace 9 to 12Cr martensitic steels with high-strength nickel-base superalloys or austenitic steels for components exposed to the highest temperatures. However, due to the high cost of nickel-base superalloys, it is desirable to use 9 to 12% Cr martensitic steels for components exposed to slightly lower temperatures, ideally expanding their use up to 650 °C. Key challenges in developing ferritic steels for 650 °C USC boilers include enhancing oxidation resistance and long-term creep rupture strength, particularly in welded joints where resistance to Type IV cracking is critical for constructing thick-section boiler components. The current research aims to investigate the creep deformation behavior and microstructure evolution during creep for base metals and heat-affected-zone (HAZ) simulated specimens of tempered martensitic 9Cr steels, including 9Cr-boron steel and conventional steels like grade 91 and 92. The study discusses the creep strengthening mechanisms and factors influencing creep life. It proposes an alloy design strategy that combines boron strengthening and MX nitride strengthening, avoiding the formation of boron nitrides during normalizing heat treatment, to improve the creep strength of both base metal and welded joints.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 271-282, October 11–14, 2016,
...-rich dark particles in BSE images, mainly found in 700°C crept specimen) and fine secondary M23C6 carbide (Cr and W- rich grey particles in BSE images, found in crept specimens of 700°C to 800°C) were also identified in crept specimens, Laves phase was the main precipitation strengthening phase...
Abstract
View Papertitled, Investigation of Long Term Creep Damage Behavior and Life Assessment of Ni Based Weldment
View
PDF
for content titled, Investigation of Long Term Creep Damage Behavior and Life Assessment of Ni Based Weldment
Continuous and extensive works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants worldwide. Since Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti, ASME Code Case 2684) was selected as one of the promising candidate materials of A-USC boiler tube and pipe for long-term creep strength evaluation and field exposure test. In the present study, to establish the creep damage and life assessment method for Ni based alloy component, long-term creep rupture properties, microstructural stability, and creep damage morphology of HR6W weldment were experimentally investigated. Creep tests of HR6W weldment were conducted at temperature range of 700 to 800°C for durations up to 70,000 hours. Failure behavior of creep void formation and creep crack growth was identified, and damage mechanism of weldment during creep were discussed and characterized. Furthermore, uniaxial interrupted creep tests were carried out, the creep damage evaluation was conducted and life assessment approach was proposed based on the metallographic quantification evaluation of creep void and microstructure evolution. It demonstrated the possibility and validity to evaluate creep damage of Ni based alloy component with creep void and microstructure parameters.
1