Skip Nav Destination
Close Modal
Search Results for
Larson-Miller method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 70 Search Results for
Larson-Miller method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 125-130, October 11–14, 2016,
.... Siefert, editors INFLUENCE OF DATA SCATTERING ON ESTIMATION OF 100,000 HOURS CREEP RUPTURE STRENGTH OF ALLOY 617 AND ALLOY 740 BY LARSON-MILLER METHOD Fujio Abe, Masaaki Tabuchi and Masao Hayakawa National Institute for Materials Science 1-2-1 Sengen, Tsukuba 305-0047, Japan ABSTRACT The reasonable...
Abstract
View Paper
PDF
The reasonable procedures for estimation of 100,000 h creep rupture strength have been investigated for Alloy 617 and Alloy 740 for A-USC power plants by Larson Miller method. The creep rupture data of longer duration than 500 h in the temperature range between 593 and 816 °C and between 600 and 850 °C were used for the analysis on Alloy 617 and Alloy 740, respectively. The data were obtained by Special Metals. In these temperature ranges, Ni3Al-γ’ can precipitate in Alloy 617 and Alloy 740 during creep. The maximum time to rupture was 40,126.7 and 24,066 h for Alloy 617 and Alloy 740, respectively. The rupture data for Alloy 617 exhibit large scattering, especially at 760 °C, showing a split into two groups. After eliminating the shorter time to rupture data at 760 °C, the regression analysis using the second order equation of Larson-Miller parameter gives us the Larson-Miller constant C of 12.70 and the 100,000 h creep rupture strength of 100 MPa at 700 °C. The regression analysis underestimates the constant C and corresponding 100,000 h creep rupture strength of Alloy 617, as shown by the regression curves locating below the rupture data at long times, while those locating above the rupture data at short times. The underestimation of constant C is caused by large data scattering. The linear extrapolation of log tr versus reciprocal temperature 1/T plot to 1/T = 0 at constant stresses gives us the constant C of 18.5, which is much larger than that by the regression analysis. Using an appropriate constant C of 18.45, the 100,000 h creep rupture strength of Alloy 617 is estimated to be 123 MPa at 700 °C. On the other hand, the rupture data for Alloy 740 exhibit only a little bit scattering. The regression analysis gives us C = 18.45, which agrees very well with that by the linear extrapolation of log tr versus 1/T plot to 1/T = 0. The 100,000 h creep rupture strength of Alloy 740 is estimated to be 214 and 109 MPa at 700 and 760 °C, respectively.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
.... The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate...
Abstract
View Paper
PDF
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1361-1372, October 21–24, 2019,
... at temperatures ranging from 550 °C to 650 °C in the stress range from 70 to 220 MPa (the longest time to rupture was above 52,000 hours). Creep rupture strength was evaluated using Larson-Miller parameter model. Assessment of microstructure was correlated with the creep strength. Precipitation of Laves phase...
Abstract
View Paper
PDF
A trial weld joint of COST F and COST FB2 steels was produced using the GTAW HOT-WIRE method in conditions used in industry for production of welding steam turbine rotors. Conventional long-term creep tests (CCT) to the rupture of this weldment and the base materials were carried out at temperatures ranging from 550 °C to 650 °C in the stress range from 70 to 220 MPa (the longest time to rupture was above 52,000 hours). Creep rupture strength was evaluated using Larson-Miller parameter model. Assessment of microstructure was correlated with the creep strength. Precipitation of Laves phase and structure recovery during creep exposures were the main reasons for the failure which occurred in the heat affected zone of steel COST F. The recently developed simulative accelerated creep testing (ACT) on thermal-mechanical simulator allows the microstructural transformation of creep-resisting materials in a relatively short time to a state resembling that of multiyear application under creep conditions. ACT of samples machined from various positions in the weldment was performed at 600 °C under 100 MPa. Changes in the hardness and the microstructures of the samples, which underwent both types of creep tests, were compared. Small sample creep test (SPCT), another alternative method how to obtain information about the creep properties of materials when only a limited amount of test material is at disposal, were performed. It was shown that the same stress-temperature dependence and relationships are valid in the SPCT as in the CCT. Using a simple load-based conversion factor between the SPCT test and the CCT test with the same time to rupture, the results of both test types can be unified.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1101-1114, October 25–28, 2004,
... creep rate data'. When plotted on the basis of a Larson- Miller parameter (C=30), the calculated values compared well with actual long time rupture testing for exposed and re-heat treated specimens, and generally showed higher precision. The longest test time was about eighteen months for the stress...
Abstract
View Paper
PDF
High precision stress relaxation tests (SRT) at temperatures between 550C and 700C were performed on serviced and reheat treated T91, 9%Cr steel. The service exposure was 116,000 hours at steam temperatures to 550C. Constant displacement rate (CDR) tests were also run at 600C on notched specimens for the two conditions. Specimens, heat treated after service, were stronger at the lower test temperatures in terms of both tensile strength and creep strength. This difference was reflected in the CDR results, which also suggested a lower fracture resistance in the heat treated condition. Thus, service exposure appears to have softened the alloy and enhanced its resistance to fracture, with no evidence of embrittling reactions. Based on the analysis of the SRT tests, projections were made of the times to 1% creep and the times to rupture as well as direct comparisons with minimum creep rate data'. When plotted on the basis of a Larson- Miller parameter (C=30), the calculated values compared well with actual long time rupture testing for exposed and re-heat treated specimens, and generally showed higher precision. The longest test time was about eighteen months for the stress rupture data compared with the use of one machine for a few weeks for the SRT data. The latter actually covered a far greater range of creep rates and projected lives. The SRT test is especially consistent at higher parameter values, i.e., higher temperatures and/or lower stresses. This method of accelerated testing is now being applied to a wide range of alloys for fossil power plants for composition and process optimization, design analysis, and life assessment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, October 15–18, 2024,
.... A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods...
Abstract
View Paper
PDF
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 705-714, August 31–September 3, 2010,
... the Larson-Miller Parameter (LMP[5]: P(tr,T) = T(logtr + C), where T is test temperature in Kelvin, tr rupture time in h and C a constant, respectively) method and the Orr-Sherby-Dorn (OSD[6]: P(tr,T) = logtr @ (Q/RT)loge, where apparent activation energy Q is a constant) method. They produced quite good...
Abstract
View Paper
PDF
A new methodology challenges the conventional use of a constant C-value in the Larson-Miller Parameter (LMP) for 9-12% Cr ferritic steels, proposing instead a multi-C region analysis to address creep strength breakdown issues. Using NIMS data and other publications, the study demonstrates that C-values vary both between steel types and across stress regions. The new approach enables prediction of long-term (10 5 hours) creep rupture properties using only short-term (5×10 3 hours) test data, while d[g(σ)]/d[P(t r ,T)] versus P(t r ,T) analysis provides insight into property stability. This methodology offers a more cost-effective and accurate approach to acquiring and assessing long-term creep rupture data for these heat-resistant steels.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 137-148, October 11–14, 2016,
... regression analysis is needed based on the latest database. Following regression equations of time-temperature parameter of Larson-Miller versus stress are reported for Alloy 617 and HR6W [7]. Equation (1) is for Alloy 617 and (2) is for HR6W as a function of stress, . LMP = 30336.76 4820.06(log 128.228(log...
Abstract
View Paper
PDF
The creep degradation/life assessment for high temperature critical component materials is absolutely needed to assure the long-term service operation and there is little experience with the service exposure of the high temperature components made of newly developed Ni-based alloys. In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys. As the result, it was found that the hardness was increased by not only precipitation due to thermal aging but also creep stress/strain, and there existed linear relationship between the applied stress and creep-induced hardness increase. Also the hardness scatter measured was increased along with the progress of creep hardening and damage progressing in terms of creep life consumed. Those findings suggested that the creep life assessment of Ni-based alloys would be possible by means of hardness measurement. The paper also deals with the role and perspective development of non destructive damage detecting techniques, and life assessment issues on Ni-based alloys for A-USC power applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 802-812, October 11–14, 2016,
.... R-Square B Stress/MPa 100 18 20 22 24 26 28 LMP=(T+273.15logtr+20)/1000 30 Figure 11: The creep rupture strength of standard heat treated Waspaloy bars (Larson-Miller parameter method) According to the Larson-Miller curve of Waspaloy (see Fig.11), the extrapolation of 105 h creep rupture strength...
Abstract
View Paper
PDF
Based on the research and development of Ni-based alloy of 700°C steam turbine bolts and blades worldwide, the process, microstructure, properties characteristics and strengthening mechanism of typical 700°C steam turbine bolts and blades materials Waspaloy are discussed in this study. The result shows that Waspaloy has higher elevated temperature yield strength, creep rupture strength, anti-stress relaxation property and good microstructure stability. The Waspaloy alloy could meet the design requirements of 700°C steam turbine bolts and blades.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 230-241, October 22–25, 2013,
... data were analyzed using the Larson Miller Parameter (LMP). To find a best fit to the data, a regression to minimize the error in time to rupture (tr) was performed using the following: equation 1 where C is the LMP constant, Ax are the regression coefficients, is stress (MPa), and T is temperature...
Abstract
View Paper
PDF
Inconel alloy 740/740H (ASME Code Case 2702) is an age-hardenable nickel-based alloy designed for advanced ultrasupercritical (A-USC) steam boiler components (superheaters, reheaters, piping, etc.). In this work, creep testing, beyond 40,000 hours was conducted a series of alloy 740 heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength. Based on these results, it was found that alloy 740 has the highest strength and temperature capability of all the potential A-USC alloys available today.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 627-636, October 22–25, 2013,
... to be approximately 635°C using Larson-Miller parameter. M 23 C 6 type carbides and VX type carbonitrides were observed on the lath boundary of the modified steel. The stability of these precipitates in the modified steel is likely to suppress the degradation of the long term creep strength at 650°C. carbides...
Abstract
View Paper
PDF
The effects of Cr and W on the creep rupture life of 8.5-11.5Cr steels at 650°C were evaluated. Throughout this paper the specimen composition is expressed in mass percent. The creep rupture life of 8.5Cr steel is the longest in 8.5-11.5Cr steels at 650°C under the stress of 78MPa. The creep rupture life of 9Cr steel at 650°C was extended with increasing W content. The creep strength of the modified steel, 9Cr-4W-3Co-0.2V-NbBN steel, at 650°C did not decrease sharply up to 32000h. The 105h creep rupture temperature of this steel under the stress of 100MPa was estimated to be approximately 635°C using Larson-Miller parameter. M 23 C 6 type carbides and VX type carbonitrides were observed on the lath boundary of the modified steel. The stability of these precipitates in the modified steel is likely to suppress the degradation of the long term creep strength at 650°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 600-609, October 11–14, 2016,
... the recommended value (i.e. 570 608 4.4 Estimate of Residual Creep Life The Larson-Miller method has been applied to estimating the residual creep life of 10CrMo910 and 12Cr1MoVG sample tubes under the worst states [3,4]. During estimate, the pressure is taken as 1.5 times the safety factor. The calculation...
Abstract
View Paper
PDF
Through inner wall oxidation scale thickness measurement, sampling tests and installation of wall temperature measuring device in the boiler, the equivalent wall temperature and its distribution of secondary high temperature reheater tube were estimated and verified, and the temperature field distribution of tube platen which is of single peak distribution in the direction vertical to tube platen and an apparent lower temperature distribution covered by the smoke shield at the side of boiler wall were both obtained. For the middlemost 10CrMo910, the wall temperature of individual tube was getting close to 600°C. Afterwards material state and residual creep life of tube platen were estimated and calculated. The results of estimate and calculation show that the tube platen in the middle is not suitable for further service due to its degraded material states and lower antioxidant ability. Thus with consideration of distribution characteristics of temperature field, parts of tube platens in the middle are proposed to be replaced with T91 tubes. Furthermore, to avoid onsite heat treatment, 10CrMo910 tube covered by the smoke shield in the boiler was reserved, and a small piece of 10CrMo910 tube was welded at the inlet and outlet ends respectively in the manufactory.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 530-543, October 11–14, 2016,
... a Larson-Miller Parameter relationship, Equation 2 [20]. For Grade 91 base metal, a constant value of 30 is generally utilized for comparisons whilst for Grade 91 cross-weld samples a constant value of 20 is typically used. In both material constituent examples, a large database of Grade 91 base metal...
Abstract
View Paper
PDF
Grade 91 steel has been widely utilized in power plants over the last 20 years. Its specification worldwide has dramatically increased since the acceptance of Code Case 1943 for this material in 1983. Recent evaluation of a combination of ex-service Grade 91 steel components and virgin material has provided a unique opportunity to independently assess the performance of a combination of base metal and weldments. This approach has been grounded in the fundamental objective of linking metallurgical risk factors in Grade 91 steel to the cross-weld creep performance. Establishing critical risk factors in 9Cr steels is regarded as a key consideration in the integration of a meaningful life management strategy for these complex steels. The potential metallurgical risk factors in Grade 91 steel have been fundamentally divided into factors which affect strength, ductility or both. In this study, two heats of ex-service Grade 91 steel which exhibit dramatic differences in strength and ductility have been evaluated in the ex-service condition and re-heat treated to establish a relevant set of strength:ductility variables. This set of variables includes [strength:ductility]: low:low, medium:low, low:high and medium:high. The influence of these strength:ductility variables were investigated for feature type cross-weld creep tests to better evaluate the influence of the initial base material condition on cross-weld creep performance.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 732-743, October 22–25, 2013,
... on creep rupture life tr are usually employed: tr = to f exp(Q / R T) tr = 10-C exp(g / R T) (1) (2) where to is a material constant, f and g are functions of stress , R is the universal gas constant, and T is the absolute temperature. The activation energy Q and the Larson-Miller constant C characterize...
Abstract
View Paper
PDF
Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four regions with different values of stress exponent n for creep rupture life commonly in stress-rupture data of the three ferritic steels. Activation energies Q for rupture life in the regions take at least three different values. The values of n and Q decrease in a longer-term region. The decrease in Q value is the cause of the overestimation of long-term rupture life predicted by the conventional TTP methods neglecting the change in Q value. Therefore, before applying a TTP method creep rupture data should be divided into several data sets so that Q value is unique in each divided data set. When this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, October 15–18, 2024,
... 233 to 282 showed that the weld was stronger than the base metal and all samples failed in the base metal. In this paper, only creep testing results from friction stir welded Haynes 282 are presented. Creep rupture stress vs. the Larson-Miller parameter for transverse-weld Haynes 282 compared...
Abstract
View Paper
PDF
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, October 15–18, 2024,
... history of the last 3 decades, based on the creep data from the respective commercially produced cast steel components made of C91 (GX12CrMoVNbN9-1), C911 (GX12CrMoWVNbN10-1-1 and CB2 (GX12CrMoCoVNbNB9-2-1) by voestalpine foundry in a Larson-Miller-Plot. Figure 3: Creep strength of CB2 heavy commercial...
Abstract
View Paper
PDF
The voestalpine foundry group, operating at locations in Linz and Traisen, Austria, specializes in heavy steel casting components ranging from 1 to 200 tons for power generation, oil and gas, chemical processing, and offshore applications. Their manufacturing expertise encompasses high-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation and simulation for all thermal processes, from material development through final casting. The foundries’ comprehensive capabilities include specialized melting, molding, heat treatment, non-destructive testing, and fabrication welding, with particular emphasis on joining dissimilar cast, forged, and rolled materials. Looking toward future innovations, the group is exploring additive manufacturing for mold production and robotic welding systems to enhance shaping and surface finishing capabilities.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1182-1193, October 11–14, 2016,
...-temperature research data. Results of the fundamental HJ work was published in the classic 1945 paper which proposed an elegant relationship between time and temperature for determining tempering effects on ferritic steels and other alloys. Subsequent investigations by Larson and Miller into HJ results...
Abstract
View Paper
PDF
There is a constant need for improved knowledge of the influence of non-standard processing on the expected performance of creep strength enhanced ferritic (CSEF) materials as the total installed tonnage of these materials is rapidly increasing across the power generation industry. Cr-Mo-V steel grades micro-alloyed with niobium and titanium designed for pressurized equipment operating in the supercritical steam range proved to be very sensitive to relative minor variations in the principal heat treatment parameters time and temperature, when compared to the traditional Cr-Mo-V grades. A key component for successful welds is optimised post weld heat treatment (PWHT). Under certain conditions premature failures of welds can occur when incorrect weld and heat treatment performance result in a reduction of specified mechanical properties and high temperature creep performance, it is therefore of significant importance to have a good understanding of actual material properties for effective operation and plant life studies. This study investigated the effect and impact variations of post weld heat treatment time and temperature on mechanical properties of tungsten inert gas (TIG) and manual metal arc (MMA) welds on Grade 91 pipes from a set of reference samples. This is in preparation of establishing a benchmark set of tests to determine the integrity and expected long-term performance of butt-welds from limited site sample volumes, providing a non-intrusive methodology to identify welds suspected to have received non-standard PWHT cycles on Grade 91 pipework systems.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1161-1171, October 15–18, 2024,
... damage fraction is defined using the time fraction method and it is calculated from: = 0 1 (6) where is the creep damage fraction at cycle is the creep rupture time from an average Larson-Miller creep rupture correlation, is the hold time in the creep-fatigue test and represents the measured stress...
Abstract
View Paper
PDF
A significant research and development effort is underway to support the qualification of Alloy 709 as a Class A construction material in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 5, High Temperature Reactors. This initiative includes a comprehensive Alloy 709 code qualification plan aimed at generating extensive material testing data crucial for compiling the code case data package. The data package is essential in establishing material-specific design parameters for Alloy 709 to be used as Section III, Division 5 Class A construction material for fast reactors, molten salt reactors and gas-cooled reactors. An ASME Section III, Division 5 material code case requires the evaluation of mechanical properties from a minimum of three commercial heats, covering anticipated compositional ranges. A key part of the data package involves fatigue and creep-fatigue testing at elevated temperatures, needed for developing the fatigue design curves and the damage envelope of the creep-fatigue interaction diagram (D-diagram). This paper summarizes the strain-controlled fatigue testing on three commercial heats of Alloy 709 at 760 and 816°C with strain ranges between 0.25% and 3%. The fatigue failure data are used to generate a preliminary fatigue design curve. Additionally, the creep-fatigue testing results at 816°C with tensile hold times of 10, 30, and 60 minutes are presented in support of developing the D-diagram for Alloy 709.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1304-1312, October 22–25, 2013,
... a fracture energy model for evaluating long-term life. This model has been used to determine creep-rupture life in an austenitic stainless steel [5]. Creep-rupture life from the model was compared with that obtained using the Larson Miller parameter and they were found to be in agreement under limited...
Abstract
View Paper
PDF
In power plants operated at elevated temperatures, the operating life of structural materials increases. Therefore, it is very important to be able to predict creep strength in long term above 100,000 h. Furthermore, it has been reported that in the long term, the actual creep strength is lower than the predicted life. Although this problem has been analysed, the reasons remain unclear. In this study, a fracture energy model is used to evaluate the mechanisms of the creep strength reduction for martensitic steels. In the model, changes in fracture energy with rupture time are expressed by a power law. The energy density rate is calculated using stress, rupture elongation, and rupture time. The model indicates two mechanisms of creep strength reduction. One is the increase in rupture elongation, which leads to reduction in creep strength with ductility; the other is the decrease in reduction of area, which leads to reduction in creep strength with brittleness. Difference between the two mechanisms affects creep-fatigue strength. The study also shows that the equation based on the fracture energy model for creep-fatigue life can be obtained by a parallel translation of that for creep.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
.... That is, the alloy with larger ultimate tensile strength in Fig. 15 had the longer time to creep rupture in Fig. 16. This may result from that the contents of phase is different in three alloys. In addition, creep rupture strengths of three alloys for 105h at 700°C were above 100MPa predicted by Larson-Miller...
Abstract
View Paper
PDF
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 11-29, August 31–September 3, 2010,
... 600h at 850°C according to Larson-Miller parameter calculations, the strength level of the developed steel was estimated from the stress - time to rupture curve obtained by means of temperature accelerated testing at 850°C. As shown in Fig. 11 (13), an alloy with additions of 6% Mo and 3.5% Mb would...
Abstract
View Paper
PDF
Recently advanced ultra-super critical (A-USC) pressure power plants with 700°C class steam parameters have been under development worldwide. Japanese material R&D program for A- USC beside the plant R&D program started in 2008, launched in 2007 under the METI/NEDO foundation includes not only alloy design explores and novel ideas for developing new steels and alloys that can fill critical needs in building 700°C class advanced power plants, but also fundamental studies on creep strength and degradation assessment, which are absolutely needed to assure the long-term safe use of newly developed steels and alloys at critical temperature conditions, for instance, 650°C for ferritic steels, 700°C for austenitic steels and 750°C for Ni- based alloys. This program concept has been based on the lessons from materials issues recently experienced in the creep strength enhanced ferritic steels used for 600°C class ultra-super critical power plants. Particular outputs from the program up to now are recognized as the ferritic steel having the creep strength of 100MPa at 650°C beyond 30,000h without any Type IV degradation and as the austenitic steel developed by means of inter-metallic compounds precipitation strengthening of grain boundary which should be strongest in creep ever found. Concurrently great progresses have been seen in the research works with positron annihilation life monitoring method applicable to various kinds of defects, structural free energy values, small punch creep test data for very limited interest area, crystallographic analyses, optimum time-temperature parameter regional creep rupture curve fitting method, hardness model, etc. which would highly contribute to find out and establish the structural parameters affecting to creep strength and degradation resulting in accurately estimating the 100,000h creep strength.
1