Skip Nav Destination
Close Modal
Search Results for
Charpy V-notch impact specimens
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 33
Search Results for Charpy V-notch impact specimens
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1014-1029, August 31–September 3, 2010,
.... These were used to estimate the temperatures corresponding to 30 ft-lb average impact energy. The estimated temperatures were well below the service temperature but were above the typical hydrostatic test temperature. Charpy V-notch impact specimens chromium-molybdenum-vanadium steel flux-cored arc...
Abstract
View Papertitled, Toughness Evaluation of Welds in 9Cr-1Mo-<span class="search-highlight">V</span> and 9Cr-0.5Mo-<span class="search-highlight">V</span> Steels Made Using the Flux-Cored Arc Welding (FCAW) Process
View
PDF
for content titled, Toughness Evaluation of Welds in 9Cr-1Mo-<span class="search-highlight">V</span> and 9Cr-0.5Mo-<span class="search-highlight">V</span> Steels Made Using the Flux-Cored Arc Welding (FCAW) Process
The toughness of girth welds in 9Cr-1Mo-V and 9Cr-0.5Mo-V steel seamless pipe (ASME SA-335 Grades P91 and P92, respectively) made using the flux-cored arc welding (FCAW) process was evaluated. Electrodes from two different suppliers were used for production quality welding of each steel. The welds received post-weld heat-treatment (PWHT) in accordance with the requirements of the ASME Code. The objective of the work was to determine if the fracture toughness of the FCAW welds was acceptable for high-temperature steam piping. Toughness was measured using standard sized Charpy V-notch impact specimens. The specimens were oriented transverse to the weld seam with notch located approximately in the center of the weld metal and parallel to the direction of weld seam. Full-range (lower to upper shelf) Charpy impact energy and shear area curves were developed for each weld joint. These were used to estimate the temperatures corresponding to 30 ft-lb average impact energy. The estimated temperatures were well below the service temperature but were above the typical hydrostatic test temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... line; (d)HAZ; (e)Weld metal Standard Charpy V-notch impact specimens were machined in accordance with GB/T 229-2007 specification. The Charpy specimen has a square cross-section (2.5X10 mm2) and contains a 45°V notch, 2 mm deep with a 0.25 mm root radius, and all the specimens were obtained in the same...
Abstract
View Papertitled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
View
PDF
for content titled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 874-883, October 3–5, 2007,
... at 600, 650 and 700°C. Tensile test specimens were of the same type as that of creep rupture specimens. The tensile tests were performed at room temperature, 550, 600 and 650°C. Standard 10x10x55 mm Charpy V notch impact specimens were machined from the weldments. The samples were taken transverse...
Abstract
View Papertitled, Improvement of Creep Rupture Strength of 9Cr1MoNbV Welded Joints by Post Weld Normalizing and Tempering
View
PDF
for content titled, Improvement of Creep Rupture Strength of 9Cr1MoNbV Welded Joints by Post Weld Normalizing and Tempering
Recent years high strength 9Cr1MoNbV steel developed in USA has been major material in boiler high temperature components with the increase of steam parameters of coal fired thermal power plants. As the microstructure of this steel is tempered martensite, it is known that the softening occurs in HAZ of the weldment. In the creep rupture test of these welded joints the rupture strength is lower than that of the parent metal, and sometimes this reduction of strength is caused by TypelV cracking. To develop an effective method to improve the rupture strength of welded joint, advanced welding procedure and normalizing-tempering heat treatment after weld was proposed. 9Cr1MoNbV plates with thickness of 40-50mm were welded by 10mm width automatic narrow gap MAG welding procedure using specially modified welding material. After normalizing at 1,050°C and tempering at 780°C, material properties of the welded joints were examined. Microstructure of HAZ was improved as before weld, and rupture strength of the welded joints was equal to that of the parent metal. The long term rupture strength of the welded joints was confirmed in the test exceeded 30,000hours. This welding procedure has been applied to seam weld of hot reheat piping and headers in USC boilers successfully.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1237-1249, October 21–24, 2019,
... 8.69 3.46 D 6 325mm 0.014 61.11 21.29 8.93 3.73 Average 0.016 60.73 20.89 8.60 3.41 Min 0.014 60.13 20.42 8.29 3.11 Max 0.017 61.11 21.29 8.93 3.73 Range 0.003 0.98 0.87 0.64 0.62 Tensile and charpy V notch impact specimens were machined from their mid-section and tested to the requirements of ASTM...
Abstract
View Papertitled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and Nickel Alloys for High Temperature Applications
View
PDF
for content titled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and Nickel Alloys for High Temperature Applications
To meet worldwide emission targets many Government policies either avoid the use of coal burning plant for future energy production, or restrict emissions per kilogram of coal consumed beyond the capability of most conventional plant. As a result this has accelerated current worldwide developments of steel and nickel alloys for coal-fired plant to operate at temperatures in excess of 625°C. Within the UK a modified 9%Cr steel has been developed which is based on the MarBN steel first proposed by Professor Fujio Abe of NIMS Japan, and has been designated IBN-1. The steel is modified by additions of, typically, 3% cobalt and tungsten with controlled additions of boron and nitrogen. While development of 9%Cr steels has continued since the last EPRI high temperature material conference in 2016 (Portugal), parallel developments in nickel alloy castings for even higher temperature and pressure applications have also continued. This paper summarises the latest developments in both of these material types.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
... method to qualify the welding procedure as an increase in hardness is believed to be a direct result of formation of refined grains and not clearly attributed to the formation of untempered bainitic or martensitic structures. 3. Charpy V-notched specimens were taken with an orientation perpendicular...
Abstract
View Papertitled, The Improvement of Repair Welding for CrMoV Turbine Casings
View
PDF
for content titled, The Improvement of Repair Welding for CrMoV Turbine Casings
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1224-1236, October 21–24, 2019,
... at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength...
Abstract
View Papertitled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-<span class="search-highlight">V</span> Weld Metal
View
PDF
for content titled, Effect of Thermal Aging Treatment on Microstructure Evolution and Mechanical Properties Development in a Ni-Cr-Mo-<span class="search-highlight">V</span> Weld Metal
In this study, 25Cr2Ni2Mo1V filler metal was deposited to weld low pressure steam turbine shafts, which are operated in fossil power plants. A comparison experiment was conducted on the weld metals (WMs) before and after varied various aging duration from 200 hours up to 5000 hours at 350 ℃. Microstructure was characterized by means of scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) techniques. In addition, mechanical properties of corresponding specimens were evaluated, e.g. Vickers microhardness, Charpy V impact toughness and tensile strength. It is shown that the tensile strength remained stable while impact energy value decreased with increasing aging duration. Based on the experiment above, it was concluded that the variation of mechanical properties can be attributed to the redissolution of carbides and reduction of bainite lath substructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, February 25–28, 2025,
.... Smith, A study of The Charpy v-Notch Impact test, Cranfield Report Mat., No. 10 (1973) 506 Copyright © 2024 ASM International. All rights reserved. 2024 ASM International ...
Abstract
View Papertitled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and Nickel Alloys
View
PDF
for content titled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and Nickel Alloys
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1249-1256, February 25–28, 2025,
... for the hardness measurement. Charpy impact tests were conducted by following ASTM-E23 with the Charpy V-notched specimens in which the notch was machined onto the welded metal. Creep-rupture tests of the base and cross-weld specimens were conducted at 500 and 550°C in laboratory air and constant loading condition...
Abstract
View Papertitled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
View
PDF
for content titled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
A compositional modification has been proposed to validate an alloy design which potentially eliminates the requirement of post-weld heat treatment (PWHT) while preserving the advantage of mechanical properties in a reduced activation bainitic ferritic steel based on Fe-3Cr-3W-0.2V- 0.1Ta-Mn-Si-C, in weight percent, developed at Oak Ridge National Laboratory in 2007. The alloy design includes reducing the hardness in the as-welded condition for improving toughness, while increasing the hardenability for preserving the high-temperature mechanical performance such as creep-rupture resistance in the original steel. To achieve such a design, a composition range with a reduced C content combining with an increased Mn content has been proposed and investigated. Newly proposed “modified” steel successfully achieved an improved impact toughness in the as- welded condition, while the creep-rupture performance across the weldments without PWHT demonstrated ~50% improvement of the creep strength compared to that of the original steel weldment after PWHT. The obtained results strongly support the validity of the proposed alloy design.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1351-1360, October 21–24, 2019,
... of lath boundaries to subgrain boundaries (b) T=650°C, ac=0.6% Charpy V-notch impact toughness The effects of the temperature on the Charpy V-notch impact-absorbed energy and the portion of the shear fracture are presented in Fig. 6. The lower shelf region is located at temperatures below -40 C...
Abstract
View Papertitled, Low Cycle Fatigue Properties and <span class="search-highlight">Impact</span> Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
View
PDF
for content titled, Low Cycle Fatigue Properties and <span class="search-highlight">Impact</span> Toughness of Advanced 10% Cr Steel with High Boron and Low Nitrogen Contents
9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness at temperatures ranging from -196…100°C of advanced 10% Cr martensitic steel with high B and low N contents. The effect of new alloying scheme and corresponding peculiarities of M 23 C 6 carbides on the low cycle fatigue resistance and impact toughness of the 10%Cr martensitic steel is analyzed. It is revealed that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic steels.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
.... The Charpy impact test was conducted at various temperatures using the specimen of 10mm thickness and 10mm width with 2mm V-notch. Fabrication of tubes and pipes within the new Code Case 2199-4 was also performed using the mass production facilities. Dimension of the tubes is 50.8mm outside diameter and 8mm...
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 116-122, October 21–24, 2019,
... tempered at 750-765°C. The tempering at 780°C provides sufficiently high Charpy V-notch impact absorption energy of 135 J/cm2. ACKNOWLEDGMENTS Authors are grateful to the personnel of the Joint Research Center, Belgorod State University, for their assistance with instrumental analysis. This study...
Abstract
View Papertitled, Effect of Heat Treatment on Microstructure and Mechanical Properties of an Advanced Ta-Alloyed 9%Cr Steel
View
PDF
for content titled, Effect of Heat Treatment on Microstructure and Mechanical Properties of an Advanced Ta-Alloyed 9%Cr Steel
The microstructures of an advanced Ta-added 9Cr-3Co-2W-Mo steel with increased boron content that has been homogenized at different temperatures were investigated. The chains of coarse W-rich particles were observed in the steel after homogenization at 1150°C for 24 h. These particles remained in the microstructure after normalization and tempering. Such additional dispersion hardening in the initial state of the studied steel decreased the creep rate in transient region. However, the duration of steady state creep and overall creep time was increased in the samples homogenized at 1200°C. Despite of the presence of coarse W-rich particles, the impact toughness of the low-temperature- homogenized steel in the tempered condition was significantly higher than that of the steel homogenized at 1200°C
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, February 25–28, 2025,
... with the tensile properties (yield strength, tensile strength, elongation, and reduction of area) and hardness values to consider the relationship between material brittleness and mechanical properties. The impact test specimen was manufactured with a V-notch (10 mm) in accordance with ASTM A370-12a...
Abstract
View Papertitled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
View
PDF
for content titled, Analysis of Crystal Structure in Temper Embrittled 12% Cr Turbine Blade Steel
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
Correlation of Microstructure and Properties of Alloy 617B and Alloy C-263 for A-USC Power Plants
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 131-136, October 11–14, 2016,
..., and samples in hardened condition show values above 40 J/cm2. Figure 9: Alloy C-263: V-notch impact work (in J/cm2) at RT of tubes and plates for A-USC after solution annealing (left) and subsequent hardening at 800°C (right). Crosshatched: plates; Filled: tubes. 120 Plate Alloy C-263 samples after solution...
Abstract
View Papertitled, Correlation of Microstructure and Properties of Alloy 617B and Alloy C-263 for A-USC Power Plants
View
PDF
for content titled, Correlation of Microstructure and Properties of Alloy 617B and Alloy C-263 for A-USC Power Plants
Nickel-based Alloy 617B (DIN 2.4673) and Alloy C-263 (DIN 2.4650) with high creep strength and good fabricability are promising material candidates for the design of next generation coal-fired “Advanced Ultra-Super-Critical A-USC” power plants with advanced steam properties and thus higher requirements on the material properties. Microstructural studies of the precipitation hardened alloy C-263 were performed with Electron Microscopy (TEM) with respect to their strengthening precipitates like carbides and intermetallic gamma prime. Specimens were subjected to different ageing treatments at elevated temperatures for different times. The microstructural results of the investigated nickel alloy C-263 are presented and discussed with respect to their correlation with required properties for A-USC, e.g. the mechanical properties, the creep resistance and the high temperature stability and compared to Alloy 617B. The manufacturing procedure for the prematernal and forgings as well as for thin walled tube components for A-USC power plants is presented.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 877-887, October 11–14, 2016,
...-independent and time-dependent properties Mechanical testing was performed to assess hardness, room temperature and high temperature (up to 700 °C / 1290 °F) tensile properties, according to current ASTM standards E8, E21 and E384. In addition, Charpy V-notched impact testing was performed on 10×10 mm size...
Abstract
View Papertitled, Tenaris New High Steam Oxidation Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
View
PDF
for content titled, Tenaris New High Steam Oxidation Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASTM grade 91, above 600 °C, particularly related to scale growth and liftoff. After laboratory development, Thor was successfully validated at the industrial level. Several heats up to 80 metric tons were cast at the steel shop, hot rolled to tubes of various dimensions, and heat treated. Trial heats underwent extensive characterization, including deep microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1329-1340, October 22–25, 2013,
...: Elastic properties. 1332 Impact test Crystallinity Impact tests were carried out in the temperature range between 50 and 80°C, using Charpy V-notch specimens taken from the tube (Heat 5) that has an outer diameter of 55.5 mm and a thickness of 12 mm. As illustrated in Figure 5, the tube (Heat5) exhibits...
Abstract
View Papertitled, A New Developed 9%Cr Steel with High Boron Content Achieving the Long-Term Microstructural Stability and the Optimized Mechanical Properties for 625°C USC Power Plant Boiler
View
PDF
for content titled, A New Developed 9%Cr Steel with High Boron Content Achieving the Long-Term Microstructural Stability and the Optimized Mechanical Properties for 625°C USC Power Plant Boiler
A new 9%Cr steel with high boron levels (boron steel) has been developed by optimization studies on steels and alloys that are applicable to advanced ultra-super critical power plants operated at steam conditions of 700°C and 30 MPa and above. The composition and heat treatment condition of boron steel was optimized by the initial hardness, tensile strength, yield strength, and Charpy impact values on the basis of the fundamental investigation with the stability of the long-term creep strength. Creep testing of boron steel was conducted at temperatures between 600 and 700°C. The creep rupture strength at 625°C and 105 h is estimated to be 122 MPa for the present 9% Cr steel with high boron by Larson-Miller parameter method. Furthermore, physical properties as a function of temperature, metallurgical properties, tensile properties, and toughness were examined to evaluate the applicability of the steel for a 625°C USC power plant boiler. It was also confirmed that the steel has good workability for such an application by the flaring and flattening tests with tube specimens having an outer diameter of approximately 55 mm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 60-70, October 21–24, 2019,
... @ 650°C 64 RESULTS OF IMPACT TESTS OF WELDS AND HAZ Impact tests were carried out in order to determine the values of impact energy for the weld and HAZ; they were performed at room temperature on test pieces with a Charpy V notch in the weld, HAZ and parent metal following the requirements...
Abstract
View Papertitled, Fabrication Experience of New High Oxidation Material—Thor 115
View
PDF
for content titled, Fabrication Experience of New High Oxidation Material—Thor 115
Development of steels used in the power generation industry for the production of boilers characterized by supercritical parameters poses new challenges. The introduction of new combinations of alloying agents aimed at obtaining the best possible mechanical properties, including creep resistance, affects the weldability of new steels. Each of the latter has to undergo many tests, particularly as regards bending and welding, in order to enable the development of technologies ensuring failure-free production and assembly of boiler systems. Martensitic steels containing 9% Cr, used in the manufacturing of steam superheaters, are characterized by excellent creep resistance and, at the same time, low oxidation resistance at a temperature in excess of 600°C. In turn, steels with a 12% Cr content, i.e., VM12-SHC or X20CrMoV12-1 are characterized by significantly higher oxidation resistance but accompanied by lower strength at higher temperatures, which translates to their limited application in the production of boilers operating at the most top parameters.X20CrMoV12-1 was withdrawn from most of the power plants, and VM12-SHC was supposed to replace it, but unfortunately, it failed in regards to creep properties. To fulfill the gap a new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris and it is designated as Thor115 (Tenaris High Oxidation Resistance). This paper covers the experience gained during the first steps of fabrication, which includes cold bending and welding of homogenous joints.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1232-1243, October 22–25, 2013,
... 10045-1: Charpy impact test on metallic materials. Test method (V- and U-notches) 8. ISO 15614-1: Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 1: Arc and gas welding of steels and arc welding of nickel and nickel alloys 9. ISO 5173...
Abstract
View Papertitled, Application of New GMAW Welding Methods Used in Prefabrication of P92 (X10CrWMoVNb9-2) Pipe Butt Welds
View
PDF
for content titled, Application of New GMAW Welding Methods Used in Prefabrication of P92 (X10CrWMoVNb9-2) Pipe Butt Welds
Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using GTAW process combined with MMA processes. Progress in GMAW process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding procedure. The investigation also involved microscopic and fractographic examinations and creep tests. The results reveal that welding with GMAW is by no means inferior to a currently applied SMAW method yet the time of the process is shorter by 50%. The article presents the world’s first known positive results in welding of P92 grade steel using GMAW welding method.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1046-1057, October 11–14, 2016,
... are listed in Table 4. 1050 Table 4. Chemical composition of tube and pipe (in wt. C Mn Si Cr Mo Ni Cu V Nb (Cb) N Tube 0.088 0.48 0.14 11.29 0.487 0.14 0.07 0.259 0.038 0.045 Pipe 0.112 0.44 0.22 10.90 0.474 0.10 0.06 0.191 0.030 0.053 A specimen of the weld deposit from each completed weld type...
Abstract
View Papertitled, Thor115 Welding Experience
View
PDF
for content titled, Thor115 Welding Experience
A new martensitic steel was developed for power generation applications. Tenaris High Oxidation Resistance (Thor) is an evolution of Grade 91, designed to have improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and extensive development performed in the last decade, Thor was engineered to overcome temperature limitations of Grade 91, yet it can be processed in the same fashion, permitting the use of existing best practices for Grade 91 boiler fabrication. Welding trials were performed on Thor tubes and pipe using welding procedures that are routinely employed in the construction of Grade 91 steel components. A summary of relevant results is presented, demonstrating the applicability of long-established and tested welding procedures to components manufactured with Thor steel.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 129-139, October 3–5, 2007,
... in Fig.5. 100 m 25 m Figure 5. Optical microstructure of fully tempered bainite (Heat A) Fig.6 shows TEM images of the specimen crept for 5863h at 550°C with 196MPa. Fine MX-type (M: V, Nb, Mo X: C, N) carbides precipitate in grains and interfere with the motion of dislocations. Partially spherical...
Abstract
View Papertitled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-<span class="search-highlight">V</span>) Steel Tube
View
PDF
for content titled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-<span class="search-highlight">V</span>) Steel Tube
Improvement of thermal efficiency of new power plants by increasing temperature and pressure of boilers has led us to the development of high creep strength steels in the last 10 years. HCMA is the new steel with base composition of 1.25Cr-0.4Mo-Nb-V-Nd, which has been developed by examining the effects of alloying elements on microstructures, creep strength, weldability, and ductility. The microstructure of the HCMA is controlled to tempered bainite with low carbon content and the Vickers hardness value in HAZ is less than 350Hv to allow the application without preheating and post weld heat treatment. The HCMA tube materials were prepared in commercial tube mills. It has been demonstrated that the allowable stress of the HCMA steel tube is 1.3 times higher than those of conventional 1%Cr boiler tubing steels in the temperatures range of 430 to 530°C. It is noted that creep ductility has been drastically improved by the suitable amount of Nd (Neodymium)-bearing. The steam oxidation resistance and hot corrosion resistance of the HCMA have been proved to be the same level of the conventional 1%Cr and 2%Cr steels. It is concluded that the HCMA has a practical capability to be used for steam generator tubing from the aspect of good fabricability and very high strength. This paper deals with the concept of material design and results on industrial products.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 992-1005, October 22–25, 2013,
... in metallic materials - Impact tests - Test specimen location, notch orientation and examination 8. EN 10045-1: Charpy impact test on metallic materials. Test method (V- and U-notches) 9. ISO 15614-1: Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part...
Abstract
View Papertitled, Application of EPRI P87 in Dissimilar Austenitic-Martensitic Welded Joints of Tempaloy AA-1 and T92 Steel Grades
View
PDF
for content titled, Application of EPRI P87 in Dissimilar Austenitic-Martensitic Welded Joints of Tempaloy AA-1 and T92 Steel Grades
Dynamic development of steels used in power engineering industry for the production of boilers characterised by supercritical parameters poses new welding challenges. The introduction of new combinations of alloying agents aimed at obtaining the best possible mechanical properties, including creep resistance, affects the weldability of new steels. Each of the latter have to undergo many tests, particularly as regards bending and welding, in order to enable the development of technologies ensuring failure-free production and assembly of boiler systems. Martensitic steels containing 9% Cr, used in the manufacturing of steam superheaters, are characterised by good creep resistance and, at the same time, low oxidation resistance at a temperature in excess of 600°C. In turn, steels with a 12% Cr content are characterised by significantly higher oxidation resistance, but accompanied by lower strength at higher temperatures, which translates to their limited application in the production of boilers operating at the highest parameters. The niche between the aforesaid steels is perfectly filled by austenitic steels, the creep resistance and oxidation resistance of which are unquestionable. This article presents experience gained while welding dissimilar joints of advanced steels TEMPALOY AA-1 and T92, with the use of EPRI P87, Inconel 82 and Inconel 617 filler metals. The tests involving the said steel grades belong to the very few carried out in the world.
1