Skip Nav Destination
Close Modal
Search Results for
Alloy 617
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 128 Search Results for
Alloy 617
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 125-130, October 11–14, 2016,
.... Siefert, editors INFLUENCE OF DATA SCATTERING ON ESTIMATION OF 100,000 HOURS CREEP RUPTURE STRENGTH OF ALLOY 617 AND ALLOY 740 BY LARSON-MILLER METHOD Fujio Abe, Masaaki Tabuchi and Masao Hayakawa National Institute for Materials Science 1-2-1 Sengen, Tsukuba 305-0047, Japan ABSTRACT The reasonable...
Abstract
View Paper
PDF
The reasonable procedures for estimation of 100,000 h creep rupture strength have been investigated for Alloy 617 and Alloy 740 for A-USC power plants by Larson Miller method. The creep rupture data of longer duration than 500 h in the temperature range between 593 and 816 °C and between 600 and 850 °C were used for the analysis on Alloy 617 and Alloy 740, respectively. The data were obtained by Special Metals. In these temperature ranges, Ni3Al-γ’ can precipitate in Alloy 617 and Alloy 740 during creep. The maximum time to rupture was 40,126.7 and 24,066 h for Alloy 617 and Alloy 740, respectively. The rupture data for Alloy 617 exhibit large scattering, especially at 760 °C, showing a split into two groups. After eliminating the shorter time to rupture data at 760 °C, the regression analysis using the second order equation of Larson-Miller parameter gives us the Larson-Miller constant C of 12.70 and the 100,000 h creep rupture strength of 100 MPa at 700 °C. The regression analysis underestimates the constant C and corresponding 100,000 h creep rupture strength of Alloy 617, as shown by the regression curves locating below the rupture data at long times, while those locating above the rupture data at short times. The underestimation of constant C is caused by large data scattering. The linear extrapolation of log tr versus reciprocal temperature 1/T plot to 1/T = 0 at constant stresses gives us the constant C of 18.5, which is much larger than that by the regression analysis. Using an appropriate constant C of 18.45, the 100,000 h creep rupture strength of Alloy 617 is estimated to be 123 MPa at 700 °C. On the other hand, the rupture data for Alloy 740 exhibit only a little bit scattering. The regression analysis gives us C = 18.45, which agrees very well with that by the linear extrapolation of log tr versus 1/T plot to 1/T = 0. The 100,000 h creep rupture strength of Alloy 740 is estimated to be 214 and 109 MPa at 700 and 760 °C, respectively.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 149-160, October 11–14, 2016,
... Abstract Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal...
Abstract
View Paper
PDF
Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 504-512, October 22–25, 2013,
... block and so on. Therefore, trial production and verification test of Step block (weight: 1.7 ton) with actual component thickness 100-300mm were firstly performed to investigate basic casting material properties in this study. As candidate alloy, alloy 617 was chosen from a commercially available Ni...
Abstract
View Paper
PDF
Advanced Ultra-Super-Critical (A-USC) technology is one of the remarkable technologies being developed to reduce CO 2 emissions. The 700°C class A-USC steam turbine project was launched in 2008 to contribute to substantial reductions in CO 2 emissions and major Japanese manufacturers of boilers and turbines joined forces with research institutes to bring the project to reality. The use of Ni-base alloys is necessary for high temperature component of 700°C class AUSC steam turbine, and which is required increasing in size of Ni-base casting alloys to apply inner casing, valve body, nozzle block and so on. Therefore, trial production and verification test of Step block (weight: 1.7 ton) with actual component thickness 100-300mm were firstly performed to investigate basic casting material properties in this study. As candidate alloy, alloy 617 was chosen from a commercially available Ni-base alloy, from the viewpoint of large component castability and balance of mechanical properties stability at 700°C use. Microstructure test, high temperature mechanical test and long-term heating test of each thickness part specimen were carried out and good creep rupture strength was obtained. Next, the nozzle block of alloy 617 was manufactured for the trial casting of the actual machine mock-up component with complex shape (weight: 1.2 ton). For a comparison, alloy 625 was cast at the same time. Both castings of alloy 617 and alloy 625 were able to manufacture without a remarkable defect. Detailed comparisons to microstructures and mechanical properties are included in this paper.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 303-309, October 25–28, 2004,
... Abstract Trials have been performed to study the enhancement of the high temperature strength of alloy 617 by utilizing the solid solution strengthening effects of tungsten additions in the amounts of 3.30 weight % and 5.61 weight %. It could be successfully demonstrated that with the 5.61 wt...
Abstract
View Paper
PDF
Trials have been performed to study the enhancement of the high temperature strength of alloy 617 by utilizing the solid solution strengthening effects of tungsten additions in the amounts of 3.30 weight % and 5.61 weight %. It could be successfully demonstrated that with the 5.61 wt.% tungsten addition, the resultant mechanical high temperature properties in the range of 700 to 750 °C were far superior to standard alloy 617. Also with regard to the oxidation resistance behavior, tungsten alloyed alloy 617 exhibited superior behavior to tungsten free standard alloy 617. Only in the hot corrosion simulated tests, the tungsten containing alloys showed increasing disadvantage with increased tungsten content. However in the real world under actual service conditions, this is of lesser relevance because the gas turbine components are and could be protected by TBC (thermal barrier coatings) and/or MCrAlY coatings. This paper describes the results of these developments. Very recent data generated on the aging response indicates drastic loss in impact values on the tungsten modified alloys after aging at 3000 hours and 5000 hours at 700°C and 750°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 571-583, August 31–September 3, 2010,
... Abstract To enhance power plant efficiency, global projects aim to increase operating temperatures to 700 °C (1292 °F) and beyond, surpassing the capabilities of conventional ferritic and austenitic steel alloys and necessitating the use of nickel-based alloys like Alloy 617. This study...
Abstract
View Paper
PDF
To enhance power plant efficiency, global projects aim to increase operating temperatures to 700 °C (1292 °F) and beyond, surpassing the capabilities of conventional ferritic and austenitic steel alloys and necessitating the use of nickel-based alloys like Alloy 617. This study evaluated the fatigue and creep-fatigue performance of Alloy 617, including both parent metal and welds, at 650 °C (1202 °F). Tests were conducted on virgin material, service-aged samples (up to 25,000 hours), and material over-aged at 800 °C (1472 °F) for 1,000 hours. Results indicated that service aging only slightly reduced the pure fatigue properties of Alloy 617, but significantly decreased its life under creep-fatigue conditions. The creep-fatigue life of ex-service welds was reduced to less than one-third of that of virgin parent metal. The data suggests that the introduction of a tensile hold period impacts Alloy 617's life more than Alloy 263 but less than Alloy 740, potentially linked to the cyclic strength of the alloys. The reduction in life for Alloy 617 is notably greater than that observed in conventional ferritic alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1048-1059, October 21–24, 2019,
... of Alloy 617 was conducted, because stress relaxation cracking in the heat affected zone (HAZ) has actually been reported for repair welds in Alloy 617 steam piping in European A-USC field-testing. Solidification cracking susceptibilities of Alloy 617 were the highest; followed by HR35, Alloy 740 and Alloy...
Abstract
View Paper
PDF
The susceptibilities of hot cracking and reheat cracking of A-USC candidate Ni-based alloys were evaluated relatively by Trans-Varestraint testing and Slow Strain Rate Tensile (SSRT) testing. In addition, semi-quantitative evaluation of the stress relaxation cracking susceptibility of Alloy 617 was conducted, because stress relaxation cracking in the heat affected zone (HAZ) has actually been reported for repair welds in Alloy 617 steam piping in European A-USC field-testing. Solidification cracking susceptibilities of Alloy 617 were the highest; followed by HR35, Alloy 740 and Alloy 141, which were all high; and then by HR6W and Alloy 263, which were relatively low. In addition, liquation cracking was observed in the HAZ of Alloy 617. The reheat cracking susceptibilities of Alloy 617, Alloy 263, Alloy 740 and Alloy 141 were somewhat higher than those of HR6W and HR35 which have good creep ductility due to the absence of γ’ phase precipitates. A method to evaluate stress relaxation cracking susceptibility was developed by applying a three-point bending test using a specimen with a V-notch and finite element analysis (FEA), and it was shown that stress relaxation cracking of aged Alloy 617 can be experimentally replicated. It was proposed that a larger magnitude of creep strain occurs via stress relaxation during the three-point bending test due to a higher yield strength caused by γ’ phase strengthening, and that low ductility due to grain boundary carbides promoted stress relaxation cracking. The critical creep strain curve of cracking can be created by means of the relationship between the initial strain and the creep strain during the three-point bending tests, which were calculated by FEA. Therefore, the critical conditions to cause cracking could be estimated from the stress relaxation cracking boundary from of the relationship between the initial strain and the creep strain during the three-point bending test.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1169-1180, October 21–24, 2019,
... of CCA617 resulted in increased creep-rupture strength compared to the conventional alloy 617 chemistry at applied stress levels of ~150 MPa and above. Long-term creep rupture testing of weldments (in one case, over 100,000 h) showed that their creep-rupture lives were dependent on the welding process. Gas...
Abstract
View Paper
PDF
This paper presents results and analyses from long-term creep-rupture testing of alloy CCA617 (also known as alloy 617B) in wrought and welded forms at temperatures and stresses relevant to power generation under advanced steam conditions. The refined controlled chemical composition of CCA617 resulted in increased creep-rupture strength compared to the conventional alloy 617 chemistry at applied stress levels of ~150 MPa and above. Long-term creep rupture testing of weldments (in one case, over 100,000 h) showed that their creep-rupture lives were dependent on the welding process. Gas-tungsten-arc and shielded metal-arc weldments of CCA617 performed nearly equivalent to standard alloy 617 base metals in creep, but there was some debit in creep-rupture resistance when compared to CCA617 base metal. Submerged arc welding produced weldments that were notably weaker than both versions of alloy 617 base metal under creep conditions, possibly due to lack of optimization of filler wire composition and flux.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
... of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate...
Abstract
View Paper
PDF
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ...
Abstract
View Paper
PDF
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1341-1351, October 22–25, 2013,
... properties of Fe/Ni weld joints with different compositions. Investigation of thermally aged Fe/Ni diffusion couples revealed that Fe-based ferritic steel and Alloy 617 weld joints with a large difference in Cr content showed strong C diffusion at the weld interface. This decreased the creep rupture life...
Abstract
View Paper
PDF
In order to develop an Fe/Ni dissimilar-weld rotor structure for an Advanced Ultra Super Critical turbine, fundamental studies on the metallurgical properties of Fe/Ni welds are needed. In the work reported in this paper, we studied the microstructure evolution and creep rupture properties of Fe/Ni weld joints with different compositions. Investigation of thermally aged Fe/Ni diffusion couples revealed that Fe-based ferritic steel and Alloy 617 weld joints with a large difference in Cr content showed strong C diffusion at the weld interface. This decreased the creep rupture life of the weld joint, caused by coarsening of a martensitic structure near the interface. Analysis using Fe/Ni diffusion couples and thermodynamic calculations suggested that the driving force of C diffusion is the chemical potential gradient at the interface, and the difference in Cr content between Fe and Ni accelerates the C diffusion.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet...
Abstract
View Paper
PDF
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 137-148, October 11–14, 2016,
.... In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys...
Abstract
View Paper
PDF
The creep degradation/life assessment for high temperature critical component materials is absolutely needed to assure the long-term service operation and there is little experience with the service exposure of the high temperature components made of newly developed Ni-based alloys. In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys. As the result, it was found that the hardness was increased by not only precipitation due to thermal aging but also creep stress/strain, and there existed linear relationship between the applied stress and creep-induced hardness increase. Also the hardness scatter measured was increased along with the progress of creep hardening and damage progressing in terms of creep life consumed. Those findings suggested that the creep life assessment of Ni-based alloys would be possible by means of hardness measurement. The paper also deals with the role and perspective development of non destructive damage detecting techniques, and life assessment issues on Ni-based alloys for A-USC power applications.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 837-854, October 25–28, 2004,
... Chemistry Alloy 617, a variant of Inconel 617 that has been dubbed “CCA 617.” The CCA 617 was represented in both thick plate and tubular product forms, but the stainless steel was only available as tubing. Issues that might be encountered in fabricating advanced boiler headers and piping were addressed...
Abstract
View Paper
PDF
Construction of boilers that can take advantage of the higher efficiencies offered by thermodynamic cycles operating in the ultrasupercritical range will require materials having elevated temperature properties considerably superior to those of the alloys used in more conventional boilers. While many of the materials currently under consideration for ultrasupercritical boiler applications have seen use in other applications, few have been fully investigated using the product forms and section sizes required by high-temperature, high- pressure steam generators. Before any material can be considered truly applicable for use in these advanced plants, the requirements and effects of boiler industry fabrication processes must be explored in addition to determining the properties of the basic alloys. This need was recognized in a materials evaluation program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office and a portion of this program has been devoted to studying the weldability of candidate ultrasupercritical boiler alloys. This paper describes the results of welding trials involving two of these alloys: Super 304H stainless steel and Controlled Chemistry Alloy 617, a variant of Inconel 617 that has been dubbed “CCA 617.” The CCA 617 was represented in both thick plate and tubular product forms, but the stainless steel was only available as tubing. Issues that might be encountered in fabricating advanced boiler headers and piping were addressed while welding the CCA 617 plate with shielded metal arc and submerged arc processes. Similarly, experience working with tubular product forms of both alloys was gained while making butt joints with an orbital gas tungsten arc process. The paper describes the problems presented, the procedures developed, and the basic characteristics of the welds produced.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
...) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617...
Abstract
View Paper
PDF
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 436-449, August 31–September 3, 2010,
... of achieving a steam temperature of 650°C. With nickel-based materials, the goal is to achieve steam temperatures of 700°C and higher. Alloy 617 has proved to be a very promising candidate in this field and a modified version is currently being developed in Japan. Materials of this type are used in both...
Abstract
View Paper
PDF
In Europe and Japan, great efforts are currently being invested in the development of materials designed to increase the steam temperature in fossil power plants. In the steel segment, the COST program is concentrating on 10% Cr steels with the addition of boron with the aim of achieving a steam temperature of 650°C. With nickel-based materials, the goal is to achieve steam temperatures of 700°C and higher. Alloy 617 has proved to be a very promising candidate in this field and a modified version is currently being developed in Japan. Materials of this type are used in both the turbine and in parts of the boiler.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1047-1058, October 22–25, 2013,
... Abstract Welding processes and fabrication techniques have been studied in the development of Advanced USC boilers. Advanced 9Cr steels, Fe-Ni alloy (HR6W) and Nickel base alloys (HR35, Alloy 617, Alloy 263, Alloy 740 and Alloy 740H) have been selected as candidate materials for the boiler...
Abstract
View Paper
PDF
Welding processes and fabrication techniques have been studied in the development of Advanced USC boilers. Advanced 9Cr steels, Fe-Ni alloy (HR6W) and Nickel base alloys (HR35, Alloy 617, Alloy 263, Alloy 740 and Alloy 740H) have been selected as candidate materials for the boiler. The weld joints of these alloys were prepared from plates, small diameter tubes and large pipes, and welding procedure tests were performed. In this study, TIG and SMAW were applied. Both welding process produced good weld joints, and they showed good results in bending tests, tensile tests and the Charpy impact test. To select the annealing conditions for stress relief, stress relaxation tests and hardness tests were conducted on the weld joints after various heat treatments. The microstructure was also evaluated by SEM and TEM. Creep rupture tests are being performed for the weld joints with and without heat treatment. The maximum creep rupture tests are expected to take over 100,000 hours. In the study of fabrication techniques, hot bending tests by high frequency induction heating for large pipes and cold/hot bending tests for small diameter tubes were established. After the bending tests, mechanical property tests such as tensile tests, impact tests and creep rupture tests were conducted. The effect of pre-strain on creep strength was studied to take the creep test results after bending into consideration. The creep rupture test will be continued for specimens from weld joints and bending pipes to show their long term reliability.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... Abstract In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior...
Abstract
View Paper
PDF
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 436-447, October 22–25, 2013,
... Abstract A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were...
Abstract
View Paper
PDF
A Ni-based superalloy named "TOS1X-2" has been developed as a material for A-USC turbine rotors. TOS1X-2 is based on Inconel Alloy 617 and has a modified chemical composition to achieve the higher strength needed for over 700°C-class A-USCs. Aging heat treatment conditions were determined from the mechanical properties and microstructure. We manufactured an actual-scale rotor model made of TOS1X-2. A 31 ton ingot was manufactured, followed by forging of the model rotor with a diameter of 1100 mm and length of 2400 mm without any defects. Metallurgical and mechanical analyses of the model rotor were carried out. All metallurgical and mechanical features of the TOS1X-2 rotor model satisfied the requirements for not only 700°C-class but also over 700°C-class A-USC turbine rotor.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1198-1212, October 25–28, 2004,
... will require the use of nickel-based superalloys. Long-term creep strength will be a determining factor in achieving the highest possible steam conditions. To this end, the creep strength of commercially available (Haynes 230), modified/controlled chemistry (CCA617/Maгco 617), and new (INCONEL 740) alloys...
Abstract
View Paper
PDF
The demand for higher efficiency and reduced emissions in coal-fired power boilers will result in the use of higher steam temperatures and pressures. A significant materials effort is required to reach a target steam condition of 760°C/35MPa. These new Ultrasupercritical (USC) units will require the use of nickel-based superalloys. Long-term creep strength will be a determining factor in achieving the highest possible steam conditions. To this end, the creep strength of commercially available (Haynes 230), modified/controlled chemistry (CCA617/Maгco 617), and new (INCONEL 740) alloys, including weldments, are being investigated at Oak Ridge National Laboratory (ORNL). Creep tests at ORNL show that the CCA617 provides a significant improvement in strength over the standard alloy 617 at 650°C to possibly 750°C. The strength of alloy 230 is well characterized, thus the testing on 230 has focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested material is being used to further understand the structure-properties relationship in these materials and determine long-term stability of the microstructures.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1038-1046, October 22–25, 2013,
... specimens and has been used to test 316H stainless steel. The FE model is first used to verify that sample integrity will not be compromised by modifying the geometry. The FE model is then applied to candidate Advanced Ultra Supercritical nickel-base alloys 617, 740H, and 800. It is determined...
Abstract
View Paper
PDF
Finite element (FE) modeling has been applied to a stress relaxation cracking (SRC) test in order to evaluate the effects of changing sample geometry and material type. This SRC test uses compressive pre-straining to create a tensile residual stress in modified compact-tension specimens and has been used to test 316H stainless steel. The FE model is first used to verify that sample integrity will not be compromised by modifying the geometry. The FE model is then applied to candidate Advanced Ultra Supercritical nickel-base alloys 617, 740H, and 800. It is determined that this stress relaxation test will be appropriate for these alloys.
1