Skip Nav Destination
Close Modal
Search Results for
Advances in Materials, Manufacturing, and Repair for Power Plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 178
Search Results for Advances in Materials, Manufacturing, and Repair for Power Plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, vi, February 25–28, 2025,
... Abstract The 10th International Conference on Advances in Materials, Manufacturing, and Repair for Power Plants was organized to be held October 15–18, 2024, in Bonita Springs, Florida, USA. The conference proceedings papers were prepared and published in time for the planned event. However...
Abstract
View Papertitled, A Note About the Conference Date and Location
View
PDF
for content titled, A Note About the Conference Date and Location
The 10th International Conference on Advances in Materials, Manufacturing, and Repair for Power Plants was organized to be held October 15–18, 2024, in Bonita Springs, Florida, USA. The conference proceedings papers were prepared and published in time for the planned event. However, Hurricane Milton delayed and necessitated relocation of the event. The postponed conference was held on February 25–28, 2025, in Indian Wells, California, USA.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, iii-v, February 25–28, 2025,
... Abstract Listings of the organizing committee, international advisory board, and technical review team for the 2024 Advances in Materials, Manufacturing, and Repair for Power Plants conference. Advances in Materials, Manufacturing, and Repair for Power Plants Advances in Materials...
Abstract
View Papertitled, Organizing Committee, International Advisory Board, and Technical Review Team
View
PDF
for content titled, Organizing Committee, International Advisory Board, and Technical Review Team
Listings of the organizing committee, international advisory board, and technical review team for the 2024 Advances in Materials, Manufacturing, and Repair for Power Plants conference.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 65-71, August 31–September 3, 2010,
... Nanocoatings for Boilers Figure 1. Relationship between programs conducting fossil materials research at EPRI Base Program - Fossil Materials & Repair (P87) Safety and availability loss due to failures are two key issues driving R&D on major fossil power plant components, especially in older plants. EPRI s...
Abstract
View Papertitled, Fossil <span class="search-highlight">Materials</span> Research at EPRI
View
PDF
for content titled, Fossil <span class="search-highlight">Materials</span> Research at EPRI
For four decades, the Electric Power Research Institute (EPRI) has led groundbreaking materials research in the power industry, yielding significant cost savings across fossil, nuclear, and power delivery sectors. This paper outlines EPRI's fossil-related research, conducted through three major programs: Fossil Materials&Repair (P87 Base program), Materials-Fossil&Nuclear strategic program, and a supplemental program addressing key industry initiatives. EPRI's research focuses on understanding damage mechanisms, developing improved materials, enhancing life prediction methodologies, and advancing component degradation assessment. The paper highlights the synergy between EPRI's short- and long-term research initiatives, referencing several presentations from the 6th International Conference on Advances in Materials Technology for Fossil Power Plants. By showcasing EPRI's comprehensive approach to materials research, this overview demonstrates the institute's ongoing commitment to advancing power generation technology and efficiency.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 47-54, October 11–14, 2016,
... connections in the power plants. FUTURE WORK For the casting technology the remaining issue is the weld repair. Several options are being investigated and in the near future it is expected that an optimised solution will be found and qualified for commercial purpose. As the projects on pipework and large...
Abstract
View Papertitled, Review of the European Developments of MarBN Steel for USC <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, Review of the European Developments of MarBN Steel for USC <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
Current demands of the power generation market require components with improved materials properties. The focus is not only on the higher operation temperatures and pressures but also more frequent cycling to accommodate the energy produced from renewable sources. Following the successful developments of steels within the COST 501, 522 and 536 programmes, further advances are being researched. As nickel superalloys remain an expensive option for coal power plants, there is a significant drive for improvements of 9-12% Cr steels to meet new demands. The most promising of the potential candidates identified for 650°C application is MarBN steel (9Cr-3Co-3W-V-Nb). This paper reviews the current state of European developments on MarBN steel. Work on this alloy has been carried out for the last 5 years. Initial projects focused on development of the cast components. UK IMPACT and following INMAP projects successfully demonstrated manufacturing capabilities of large casting components. More recent collaborations aim to develop full-size boiler components and large rotor forgings as well as further examine the properties in the operating conditions (i.e. corrosion and oxidation resistance, creep-fatigue behaviour). Additionally significant focus is placed on modelling the behaviour of MarBN components, in terms of both microstructural changes and the resulting properties.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 9-23, October 22–25, 2013,
... at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving...
Abstract
View Papertitled, ENCIO Project: A European Approach to 700°C <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
View
PDF
for content titled, ENCIO Project: A European Approach to 700°C <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
ENCIO (European Network for Component Integration and Optimization) is a European project aiming at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving environmental and economic sustainability of coal fired power plants and achieving successful deployment of carbon capture and storage technologies. The ENCIO-project is financed by industrial and public funds. The project receives funding from the European Community's Research Fund for Coal and Steel (RFCS) under grant agreement n° RFCPCT-2011-00003. The ENCIO started on 1 July 2011. The overall project duration is six years (72 months), to allow enough operating hours, as well as related data collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops are planned for 20.000 hours of operation at 700°C. The present paper summarizes the current status of the overall process design of the thick-walled components, the test loops and the scheduled operating conditions, the characterizations program for the base materials and the welded joints, like creep and microstructural analysis also after service exposure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 35-46, October 11–14, 2016,
...Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p0035 Copyright © 2016 ASM International®. All rights reserved. J. Parker, J. Shingledecker, J...
Abstract
View Papertitled, Next Generation Casting <span class="search-highlight">Materials</span> for Fossil <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, Next Generation Casting <span class="search-highlight">Materials</span> for Fossil <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant operation of up to 700°C and maybe 750°C. This paper discusses the production of prototype MarBN steel castings for potential plant operation up to 650°C, and gamma prime strengthened nickel alloys for advanced super critical plant (A-USC) operation up to 750°C. MarBN steel is a modified 9% Cr steel with chemical concentration of Cobalt and tungsten higher than that of CB2 (GX-13CrMoCoVNbNB9) typically, 2% to 3 Co, 3%W, with controlled B and N additions. The paper will discuss the work undertaken on prototype MarBN steel castings produced in UK funded research projects, and summarise the results achieved. Additionally, within European projects a castable nickel based super alloy has successfully been developed. This innovative alloy is suitable for 700°C+ operation and offers a solution to many of the issues associated with casting precipitation hardened nickel alloys.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 582-589, October 3–5, 2007,
... of advanced materials. abradable coatings chromium steel corrosion protection seals steam temperature supercritical turbines surfacing techniques Advances in Materials Technology for Fossil Power Plants Proceedings from the Fifth International Conference R. Viswanathan, D. Gandy, K. Coleman...
Abstract
View Papertitled, The Use of <span class="search-highlight">Advanced</span> <span class="search-highlight">Materials</span> on Large Steam Turbines in Supercritical Steam Cycles in the Czech Republic
View
PDF
for content titled, The Use of <span class="search-highlight">Advanced</span> <span class="search-highlight">Materials</span> on Large Steam Turbines in Supercritical Steam Cycles in the Czech Republic
The paper summarizes several years of research on the application of modern materials in the design of large steam turbines operating at high temperatures. The use of 9-12% chromium steels on main steam turbine components, the application of abradable coatings in seals and the seize/corrosion protection of selected components by modern surfacing techniques are presented. Results of materials long-term testing supported by the field application at elevated steam temperatures were used to verify the new material solutions and manufacturing techniques. The second section of the paper presents the design of a new 660 MW supercritical power plant to be built in the Czech Republic between 2008 and 2010. The unit parameters and steam cycle characteristics are presented together with the visualization of the new block. The steam turbine design is discussed with respect to the application of advanced materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1487-1499, October 21–24, 2019,
... on Advances in Materials Technology for Fossil Power Plants, October 2013, pp. 24-40. [2] M. Fukuda, T. Nishii, The Japanese program on developments for new high efficiency power plants and progress in 700 A-USC technology development, 41th MPA Seminar, October 2015. [3] M. Fukuda, et al, 700 A-USC...
Abstract
View Papertitled, 700℃ A-USC Technology Development in Japan
View
PDF
for content titled, 700℃ A-USC Technology Development in Japan
CO 2 emission reduction from coal power plants is still a serious issue to mitigate the impact of global warming and resulting climate change, though renewables are growing today. As one of the solutions, we developed A-USC (Advanced Ultra Super Critical steam condition) technology to raise the thermal efficiency of coal power plants by using high steam temperatures of up to 700℃ between 2008 and 2017 with the support of METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). The temperature is 100℃ higher than that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
.... Fabrication, casting, welding and repair studies were completed under this effort. Successful research and development resulted in the selection of high-temperature nickel-based alloy materials and fabrication processes that are suited for power generation applications, with working fluids up to approximately...
Abstract
View Papertitled, United States <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
View
PDF
for content titled, United States <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
... Abstract Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC...
Abstract
View Papertitled, Update on United States <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Project for 760 °C Steam Conditions
View
PDF
for content titled, Update on United States <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Project for 760 °C Steam Conditions
Following the successful completion of a 15-year effort to develop and test materials that would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has been working on a project (AUSC ComTest) to help achieve technical readiness to allow the construction of a commercial scale A-USC demonstration power plant. Among the goals of the ComTest project are to validate that components made from the advanced alloys can be designed and fabricated to perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for key A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. This project is intended to bring A-USC technology to the commercial scale demonstration level of readiness by completing the manufacturing R&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar (3500 psia).The A-USC ComTest project scope includes fabrication of full scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction include Inconel 740H and Haynes 282 alloys for the high temperature sections. The project team will also conduct testing and seek to obtain ASME Code Stamp approval for nickel-based alloy pressure relief valve designs that would be used in A-USC power plants up to approximately 800 MWe size. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office under a prime contract with the Energy Industries of Ohio, with co-funding from the power industry participants, General Electric, and the Electric Power Research Institute, has completed the detailed engineering phase of the A-USC ComTest project, and is currently engaged in the procurement and fabrication phase of the work. This paper will outline the motivation for the effort, summarize work completed to date, and detail future plans for the remainder of the A-USC ComTest project.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, February 25–28, 2025,
.... coal-fired power plants nickel-based alloys pressure relief valves reheater components steam turbines superheater components Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA...
Abstract
View Papertitled, Final Results of the U.S. <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Project for 760°C Steam Conditions
View
PDF
for content titled, Final Results of the U.S. <span class="search-highlight">Advanced</span> Ultra-Supercritical Component Test Project for 760°C Steam Conditions
A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project, primarily funded by the U.S. Department of Energy and Ohio Coal Development Office between 2015 and 2023, focused on validating the manufacture of commercial-scale components for an 800 megawatt power plant operating at 760°C and 238 bar steam conditions. The project scope encompassed fabrication of full-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME Code Stamp approval for nickel-based alloy pressure relief valves. This comprehensive effort successfully established technical readiness for commercial-scale A-USC demonstration plants while developing a U.S.-based supply chain and providing more accurate cost estimates for future installations.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 393-407, August 31–September 3, 2010,
... weldability Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International Conference August 31 September 3, 2010, Santa Fe, New Mexico, USA httpsdoi.org/10.31399/asm.cp.am-epri-2010p0393 Copyright © 2011 Electric Power Research Institute Distributed by ASM International®...
Abstract
View Papertitled, The <span class="search-highlight">Manufacture</span> of Large, Complex Fossil Components Using Powder Metallurgy and HIP Technologies—A Feasibility Study
View
PDF
for content titled, The <span class="search-highlight">Manufacture</span> of Large, Complex Fossil Components Using Powder Metallurgy and HIP Technologies—A Feasibility Study
The manufacture of large, complex components for ultra-supercritical and oxy-combustion applications will be extremely costly for industry over the next few decades as many of these components will be manufactured from expensive, high strength, nickel-based alloys casting and forgings. The current feasibility study investigates the use of an alternative manufacturing method, powder metallurgy and hot isostatic processing (PM/HIP), to produce high quality, and potentially less expensive components for power generation applications. Benefits of the process include manufacture of components to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 293-302, October 3–5, 2007,
..., mitigating, and managing the complex challenges associated with CSEF steel materials in high-performance industrial applications. chromium-molybdenum alloy steel cracking creep strength life prediction quality assurance reliability Advances in Materials Technology for Fossil Power Plants...
Abstract
View Papertitled, Life Management of Creep Strength Enhanced Ferritic Steels—Solutions for the Performance of Grade 91 Steel
View
PDF
for content titled, Life Management of Creep Strength Enhanced Ferritic Steels—Solutions for the Performance of Grade 91 Steel
Recent in-service experiences have revealed critical vulnerabilities in creep-strength enhanced ferritic (CSEF) steels, with cracking potentially occurring surprisingly early in a component's operational life. Fabrication irregularities have been found to introduce substantial property deficiencies compared to average material performance, raising serious concerns among industry users regarding personnel safety and equipment reliability. In response, a collaborative research program between the Electric Power Research Institute and Structural Integrity Associates, Inc. has been initiated to comprehensively address these critical material challenges. The program's extensive scope encompasses a holistic approach to material management, including rigorous investigations spanning material procurement, shop fabrication, field erection, and appropriate quality assurance procedures for each implementation phase. The research will systematically examine the behavior of both base and weld metals, with a strategic focus on developing a comprehensive life prediction methodology and optimizing maintenance protocols. Beyond its core technical objectives, the program is designed to facilitate knowledge exchange through regular participant workshops, where both program-generated findings and global utility experiences will be critically reviewed and discussed to ensure the research maintains optimal direction and relevance. This collaborative effort aims to establish a robust framework for understanding, mitigating, and managing the complex challenges associated with CSEF steel materials in high-performance industrial applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
...Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p0055 Copyright © 2016 ASM International®. All rights reserved. J. Parker, J. Shingledecker, J...
Abstract
View Papertitled, <span class="search-highlight">Materials</span> Performance in the First U.S. Ultrasupercritical (USC) <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
View
PDF
for content titled, <span class="search-highlight">Materials</span> Performance in the First U.S. Ultrasupercritical (USC) <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
... of an Advanced Superheater Alloy for Coal-Fired Boilers. Corrosion 2000. Paper 00256 © 2000 NACE International, TX. [17] B.A. Baker, et al. Welding and Repair Technology for Power Plants, Tenth International EPRI Conference. June 26-29, 2012 Marco Island, FL USA [18] J.A. Siefert, J.M. Tanzosh, J.E. Ramirez...
Abstract
View Papertitled, Current Status of the U.S. DOE/OCDO A-USC <span class="search-highlight">Materials</span> Technology Research and Development Program
View
PDF
for content titled, Current Status of the U.S. DOE/OCDO A-USC <span class="search-highlight">Materials</span> Technology Research and Development Program
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 969-983, February 25–28, 2025,
... microstructural observations uniaxial constant load creep test Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0969 Copyright © 2024 ASM...
Abstract
View Papertitled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part II, Microstructural Observations
View
PDF
for content titled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part II, Microstructural Observations
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of these simple rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. This is the second part of a two-part paper; Part I reviewed the selected tests and discussed them from a mechanical perspective. The association of performance with specific microstructural features is briefly reviewed in this paper and the remaining gaps are highlighted for consideration among the international community.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 473-482, February 25–28, 2025,
...-phase welding techniques like friction stir welding for next-generation power plant materials. durability heat treatment mechanical performance microstructure power generation shear extrusion solid-phase welding Advances in Materials, Manufacturing, and Repair for Power Plants...
Abstract
View Papertitled, <span class="search-highlight">Material</span> Synthesis and <span class="search-highlight">Advanced</span> <span class="search-highlight">Manufacturing</span> Without Melting: Advantages of Bulk, High-Shear Processing
View
PDF
for content titled, <span class="search-highlight">Material</span> Synthesis and <span class="search-highlight">Advanced</span> <span class="search-highlight">Manufacturing</span> Without Melting: Advantages of Bulk, High-Shear Processing
The next generation of materials and assemblies designed to address challenges in power generation, such as molten salt or supercritical carbon dioxide thermal transfer systems, corrosion, creep/fatigue, and higher temperature operation, will likely be highly optimized for their specific performance requirements. This optimization often involves strict control over microstructure, including homogeneity, grain size, texture, and grain boundary phases, as well as precise alloy chemistry and homogeneity. These stringent requirements aim to meet the new demands for bulk mechanical performance and durability. Some advanced materials, like oxide-dispersion strengthened or high-entropy alloys, necessitate specialized synthesis, fabrication, or welding/joining processes. Traditional methods that involve melting and solidifying can compromise the optimized microstructure of these materials, making non-melting synthesis and fabrication methods preferable to preserve their advanced characteristics. This paper presents examples where solid-phase, high-shear processing has produced materials and semi-finished products with superior performance compared to those made using conventional methods. While traditional processing often relies on thermodynamics-driven processes, such as creating precipitate phases through prolonged heat treatment, high-shear processing offers kinetics-driven, non-equilibrium alternatives that can yield high-performance microstructures. Additionally, examples are provided that demonstrate the potential for more cost-effective manufacturing routes due to fewer steps or lower energy requirements. This paper highlights advances in high-shear extrusion processing, including friction extrusion and shear-assisted processing and extrusion, as well as developments in solid-phase welding techniques like friction stir welding for next-generation power plant materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, February 25–28, 2025,
... casting thermal power generation welding investigations Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0328 Copyright © 2024 ASM...
Abstract
View Papertitled, Steel Casting Process Development: <span class="search-highlight">Advanced</span> Processing of Martensitic 9-10% Cr Steels and Nickel-Base Alloy 625
View
PDF
for content titled, Steel Casting Process Development: <span class="search-highlight">Advanced</span> Processing of Martensitic 9-10% Cr Steels and Nickel-Base Alloy 625
The voestalpine foundry group, operating at locations in Linz and Traisen, Austria, specializes in heavy steel casting components ranging from 1 to 200 tons for power generation, oil and gas, chemical processing, and offshore applications. Their manufacturing expertise encompasses high-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation and simulation for all thermal processes, from material development through final casting. The foundries’ comprehensive capabilities include specialized melting, molding, heat treatment, non-destructive testing, and fabrication welding, with particular emphasis on joining dissimilar cast, forged, and rolled materials. Looking toward future innovations, the group is exploring additive manufacturing for mold production and robotic welding systems to enhance shaping and surface finishing capabilities.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, February 25–28, 2025,
... heat recovery steam generators microstructural analysis pipe cracking pressure vessels strain monitoring thermal fatigue Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA...
Abstract
View Papertitled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
View
PDF
for content titled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... power plants chemical composition finite element method mechanical properties microstructure nickel alloys turbine rotor forgings Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors...
Abstract
View Papertitled, Status of Large Scale <span class="search-highlight">Manufacture</span> of Nickel Alloy Turbine Rotor Forgings for A-USC Steam <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, Status of Large Scale <span class="search-highlight">Manufacture</span> of Nickel Alloy Turbine Rotor Forgings for A-USC Steam <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
1