Skip Nav Destination
Close Modal
Search Results for
410 stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-19 of 19 Search Results for
410 stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 470-486, August 31–September 3, 2010,
... seven countries in a “Round Robin” testing program, aiming to establish consistent testing procedures for evaluating erosion resistance of materials used in Ultra Supercritical (USC) and advanced USC turbines. The proposed standard will use Type 410 stainless steel tested at 30 and 90-degree impingement...
Abstract
View Paper
PDF
An international initiative is underway to develop the first standardized high-temperature solid particle erosion test method for steam turbine applications, addressing limitations of the current room-temperature ASTM G76 standard. Led by EPRI, this program involves laboratories from seven countries in a “Round Robin” testing program, aiming to establish consistent testing procedures for evaluating erosion resistance of materials used in Ultra Supercritical (USC) and advanced USC turbines. The proposed standard will use Type 410 stainless steel tested at 30 and 90-degree impingement angles with 50-micron alumina particles at 200 m/s, both at room temperature and 600°C, providing more relevant conditions for current and next-generation steam turbine applications.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
... yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development. 410 stainless steel alumina powder coatings erosion resistance gas turbines solid particle erosion solid-particle erosion testing steam...
Abstract
View Paper
PDF
Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance, a similar need exists for steam turbines. Existing room-temperature SPE test standards are insufficient for evaluating turbine materials. To address this gap, an EPRI program is developing an elevated-temperature SPE standard. This collaborative effort, involving researchers from multiple countries, has yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1024-1035, October 21–24, 2019,
... for sCO2 systems. Other probe alloys selected for evaluation included 410 stainless steel at 500oC, 304L and 316L stainless steels at 600oC, and Inconel 625 at 700oC. The chemistries for these 5 alloys are shown in Table 1. Prior to delivering the probes to Sandia, each of the probes were tested...
Abstract
View Paper
PDF
Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation and maintenance of these systems. Sandia has recently explored methods available for in-situ alloy corrosion monitoring. Electrical resistance (ER) was chosen for initial tests due the operational simplicity and commercial availability. A series of long duration (>1000 hours) experiments have recently been completed at a range of temperatures (400-700°C) using ER probes made from four important structural alloys (C1010 Carbon Steel, 410ss, 304L, 316L) being considered for sCO 2 systems. Results from these tests are presented, including correlations between the probe measured corrosion rate to that for witness coupons of the same alloys.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 450-469, August 31–September 3, 2010,
... on dual-certified 403/410 12% Cr stainless steel, utilizing a newly developed test facility capable of conducting high-cycle fatigue tests in simulated steam environments at 90°C with controlled corrosive conditions. This testing platform enables the investigation of various steady and cyclic stress...
Abstract
View Paper
PDF
A research program has been initiated to develop the first predictive methodology for corrosion fatigue life in steam turbine blades, addressing a critical gap in current understanding despite extensive research into corrosion pitting and fatigue failure. The study focuses initially on dual-certified 403/410 12% Cr stainless steel, utilizing a newly developed test facility capable of conducting high-cycle fatigue tests in simulated steam environments at 90°C with controlled corrosive conditions. This testing platform enables the investigation of various steady and cyclic stress conditions, establishing a foundation for future testing of other blade steels and the development of comprehensive blade life estimation techniques.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 552-560, October 15–18, 2024,
... Abstract This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s...
Abstract
View Paper
PDF
This study investigates the mechanisms of temper embrittlement in 410 martensitic stainless steel, a material widely used in steam turbine blades due to its excellent corrosion resistance and high strength achieved through quenching and tempering heat treatments. While the material’s hardness and impact toughness strongly depend on tempering temperatures, significant embrittlement occurs around 540°C, manifesting as decreased Charpy impact energy alongside increased strength and hardness. To understand this phenomenon at the nanometer scale, high-resolution transmission electron microscopy (TEM) analysis was performed, focusing on electron diffraction patterns along the <110>α-Fe and <113>α-Fe zone axes. The analysis revealed distinctive double electron diffraction spots at 1/3(211) and 2/3(211) positions, with lattice spacing of approximately 3.5 Å—triple the typical α-bcc lattice spacing (1.17 Å). These regions were identified as metastable “zones” resembling ω-phase structures, potentially responsible for the embrittlement. While this newly identified phase structure may not fully explain the complex mechanisms of temper embrittlement, it provides valuable insights for developing improved alloying and heat treatment methods to mitigate embrittlement in martensitic steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 135-142, October 21–24, 2019,
... stainless steel piping components sulfidation corrosion thermal conductivity thermal expansion welding Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31339/asm.cp.am...
Abstract
View Paper
PDF
In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events may occur that boost the severity of corrosion: high feedstock turnover, with increasing “active” sulfur species; skin temperature rise due to the increasing insulation effect of the scale, generating an over-tempering of the material and possible degeneration into creep conditions. Thor115 is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming the superior properties of Thor115 relative to other ferritic grades. For these reasons, Thor 115 is a suitable replacement material for piping components that need an upgrade from grade T/P9 or lower, in order to reduce corrosion rate or frequency of maintenance operations.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 885-896, October 15–18, 2024,
...- 0.25%H 2 O impurities at 300 bar increased the reaction rates ≥2X at 750°C. At lower temperatures, steels are susceptible to C ingress and embrittlement. Creep-strength enhanced ferritic steels may be limited to <550°C and conventional stainless steels to <600°C. Two strategies to increase those...
Abstract
View Paper
PDF
Supercritical CO 2 (sCO 2 ) is of interest as a working fluid for several concepts including the direct- fired Allam cycle as a low-emission fossil energy power cycle. Over the past 10 years, laboratory exposures at 300 bar sCO 2 have found reasonably good compatibility for Ni-based alloys at <800°C, including an assessment of the sCO 2 impact on room temperature mechanical properties after 750°C exposures. However, initial screening tests at 1 and 20 bar CO 2 at 900°-1100°C showed poor compatibility for Ni-based alloys. In an open cycle, the introduction of 1%O 2 and 0.1- 0.25%H 2 O impurities at 300 bar increased the reaction rates ≥2X at 750°C. At lower temperatures, steels are susceptible to C ingress and embrittlement. Creep-strength enhanced ferritic steels may be limited to <550°C and conventional stainless steels to <600°C. Two strategies to increase those temperatures are higher Ni and Cr alloying additions and Al- or Cr-rich coatings. Alloy 709 (Fe- 20Cr-25Ni) shows some promising results at 650°C in sCO 2 but reaction rates were accelerated with the addition of O 2 and H 2 O impurities. Pack aluminized and chromized Gr.91 (Fe-9Cr-1Mo) and type 316H stainless steel show some promise at 600°-650°C but further coating optimization is needed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 377-387, October 11–14, 2016,
... Abstract Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based...
Abstract
View Paper
PDF
Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship between traditional melting and extrusion as compared to powder metallurgy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
.... Although the austenitic heat-resistant steel is one of austenitic stainless steel, there are few reports about martensite and martensite transformation. Only E. P. Butler, et al., has carried out 388 researches on carbide precipitates and chromium depletion at grain boundaries in 304 stainless steel after...
Abstract
View Paper
PDF
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 407-417, October 11–14, 2016,
... on the minimum creep rate. However, niobium also accelerated the formation and coarsening of σ-phase, η-Laves and M6X. Coarse particles, especially of σ-phase, facilitated the development of creep damage, which resulted in poor long-term creep ductility. austenitic stainless steel coarsening creep damage...
Abstract
View Paper
PDF
The paper deals with microstructural evolution in the AISI 316LN + 0.1 wt.% Nb steel during long-term creep exposure at 600 and 625°C. The following minor phases formed: Z-phase (NbCrN), M 23 C 6 , M6X (Cr3Ni2SiX type), η-Laves (Fe2Mo type) and σ-phase. M6X gradually replaced M 23 C 6 carbides. Primary Z-phase particles were present in the matrix after solution annealing, while secondary Z-phase particles formed during creep. Precipitation of Z-phase was more intensive at 625°C. The dimensional stability of Z-phase particles was excellent and these particles had a positive effect on the minimum creep rate. However, niobium also accelerated the formation and coarsening of σ-phase, η-Laves and M6X. Coarse particles, especially of σ-phase, facilitated the development of creep damage, which resulted in poor long-term creep ductility.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 491-503, October 22–25, 2013,
... Steel 5.5% 65 C Stainless Steel 5.8% 55 C Alloy 625 7.9% 60-70 C P91 9% Cr Steel 5.2% 85 C Super Heat above Liquidus 70 C 100 C 150 C 90 C Fig 9: Shows the simulated cooling curves of three alloys taken from a point within a heavy section casting. The red line is the cooling curve for Alloy 625...
Abstract
View Paper
PDF
The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels just don’t have enough strength, and typically have a temperature limit of around 620°C (possibly up to 650°C in the near future) in the HP environment. Therefore, material development has focused on nickel alloys. European programs such as AD700, COMTES, European 50+ and more recently, NextGen Power and Macplus, have investigated the use of nickel alloys in the steam turbine. Large castings have an important role within the steam turbine, because valves bodies and turbine casings are nearly always produced from a cast component. The geometry of these components is often complex, and therefore, the advantage of using castings for such items is that near net shapes can be produced with minimal machining. This is important, as nickel alloys are expensive, and machining is difficult, so castings offer an attractive cost benefit. Cast shapes can be more efficiently designed with regards to stress management. For example, contouring of fillet regions can help to reduce stress concentrations leads to reduced plant maintenance and casting complex shapes reduces the number of onsite fabrication welds to inspect during outage regimes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1183-1194, October 15–18, 2024,
... with specimens machined using high pressure soluble oil cooling. austenitic stainless steel cooling crack initiation endurance life force-controlled constant amplitude axial fatigue testing light water reactors low-alloy steel machining pressure vessels stress corrosion cracking Advances...
Abstract
View Paper
PDF
Supercritical carbon dioxide cooling during machining has been identified as an effective measure to mitigate the risk of stress corrosion cracking in materials utilized in the primary circuit of light water reactors, particularly in pressure vessel structural steels. This study aims to compare two different cooling methods, the novel supercritical carbon dioxide and conventional high pressure soluble oil, employed during both milling and turning processes for SA508 Grade 3 Class 2 and AISI 316L steels. As the surface conditions of materials are critical to fatigue properties, such as crack initiation and endurance life, the fatigue performance of both cooling methods for each process were then evaluated and the impact on properties determined. To compare the potential benefits of supercritical carbon dioxide cooling against conventional soluble oil cooled machining, fatigue specimens were machined using industry relevant CNC machine tools. Surface finish and machining methods were standardized to produce two different specimen types, possessing dog- bone (milled) and cylindrical (turned) geometries. Force-controlled constant amplitude axial fatigue testing at various stress amplitudes was undertaken on both specimen types in an air environment and at room temperature using a stress ratio of 0.1. The fatigue performance of the supercritical carbon dioxide cooled specimens revealed substantially greater endurance lives for both SA508 and 316L materials, when compared with specimens machined using high pressure soluble oil cooling.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 111-112, October 15–18, 2024,
... for the surface investigation; all clad pads had a length of 125 mm and a width in the range from 45 mm to 50 mm (11 to 16 tracks depending on bead width and track offset). 113 Figure 1: DLC sample 1 Material This study focused on stainless steel clads using austenitic grade 308L in powder form. The main...
Abstract
View Paper
PDF
Diode laser cladding (DLC) surfaces, valued in the nuclear industry for their wear resistance, corrosion protection, and oxidation resistance, present unique challenges in surface characterization compared to conventionally machined surfaces. While traditional machined surfaces exhibit predictable, periodic topographies that can be validated through simple linear profile measurements, DLC surfaces feature distinctive metal tracks with central peaks and inter-track troughs, creating a wave-like structure with randomly distributed spherical asperities. This complex topography cannot be adequately characterized by traditional single-trace sampling methods due to significant variations in localized features at peaks and troughs. To address this challenge, this study examines DLC surfaces produced under varying control parameters (laser power, head travel speed, powder feed rate, and track offset) using laser confocal microscopy. Both profile and areal surface measurements are compared to identify the most effective method for characterizing DLC surface structure and quality, providing a foundation for standardized quality assessment in industrial applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1075-1085, October 11–14, 2016,
... not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds. boilers butt welding hardness high-temperature water martensitic stainless steel microstructure stress corrosion cracking susceptibility stress relief heat treatment Advances in Materials Technology for Fossil...
Abstract
View Paper
PDF
In Europe between 2006 and 2012 several ultra-super-critical (USC) coal-fired power plants were built employing T24 (7CrMoVTiB10-10 / DIN EN 10216-2:2014-03 / VdTÜV sheet 533/2) in membrane walls. During commissioning stress corrosion cracking (SCC) on the tube-to-tube butt welds appeared. The widespread damages required the development of a new patented commissioning procedure to avoid recurring damages. Although this commissioning procedure was employed successfully and the power plants are in operation since then, a debate about the implementation of a hardness limit for such butt welds was initiated. According to the European standards butt welds of T24 boiler tubes with wall thickness < 10 mm (0.3937 in) do not require any post-weld heat treatment (PWHT) and no hardness limits are given. When looking at manufacturing related issues such as an imminent risk of cold cracking after welding of micro-alloyed steels a widely applied but coarse hardness limit is 350 HV. Based on laboratory tests, some authors reallocated this 350 HV hardness limit for addressing SCC susceptibility of low-alloyed steels. This article describes typical hardness levels of T24 boiler tube TIG butt welds and the SCC behavior in high temperature water. Further the effect of the stress relief heat treatment (SRHT) of the boiler membrane walls between 450 °C and 550 °C (842 °F and 1022 °F) on its hardness values and on the SCC behavior is discussed, showing that the hardness values should not be used as an indicator for SCC susceptibility of T24 boiler tube butt welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 723-734, October 11–14, 2016,
... fits to the erosion rate data as a function of velocity resulted in velocity exponents of 1.9 and 2.4 for angles of 30° and 90° respectively. These values compare well with the velocity exponents reported by Swaminathan et al [2], which were 1.9 and 2.2 for Type 410 stainless steel at 600 °C showing...
Abstract
View Paper
PDF
Work has been progressing over recent years to develop a standard test method for high temperature solid particle erosion testing. Early in 2015 this standard was published by ASTM as G211-14 Standard Test Method for Conducting Elevated Temperature Erosion Tests by Solid Particle Impingement Using Gas Jets. To support the development of this standard the European funded METROSION project has been conducting a comparison of different apparatus which employ different nozzle geometries, acceleration lengths, stand-off distances and heating and accelerating processes. The aim is to understand the influence these instrumental and experimental parameters have on the measured erosion rate and erosion mechanism. As part of this work three very distinct approaches have been compared using a common erodent and test pieces. Measurements have been performed at 600 °C with particle velocities of 50 to 320 m/s, using different stand-off distances, acceleration lengths and nozzle diameters for impact angles of 30 and 90°. This is the first time a comprehensive comparison of these parameters has been conducted and shows the relative influence of these experimental variables.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1250-1261, October 21–24, 2019,
... time of both steels was increased by more than 30 % without negatively affecting the creep rupture strain and impact values. creep rupture strength creep rupture test forgings heat treatment martensitic stainless steel microstructure steam turbines Joint EPRI 123HiMAT International...
Abstract
View Paper
PDF
Approximately 75% of the worldwide energy supply is based on fossil energy but the discussions on CO 2 emission require improvements of the conventional power technologies and also an increase of renewable energy resources. Over the past 40 years, enormous efforts, especially in the development of new materials, were made to establish the technology for the ultra-supercritical power plants, which are the standard of today’s power generation. For decades voestalpine Boehler Special Steel has been a full package supplier of customized high quality special steels and forgings with close relationships to plant manufacturers to provide products ahead of their time. This paper reports on improvements and research activities of the currently best available martensitic 9% Cr steel FB2 and the latest generation, the so-called MarBN steels, raising the operating temperatures of the 9% Cr steel class from 620 °C to 650 °C. Increasing the operating temperature requires adaptations in processes and manufacturing methods to adjust optimized microstructures with improved toughness properties and increased creep rupture strength at the same time. The microstructure of two Boron containing 9% Cr steels, FB2-2 and NPM1, developed within the framework of COST / KMM-VIN, have been investigated comparatively after different heat treatments and discussed after creep rupture tests at 650°C. The results show a dependency of the creep rupture strength on the stability of precipitates and the creep rupture time of both steels was increased by more than 30 % without negatively affecting the creep rupture strain and impact values.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, October 15–18, 2024,
..., austenitic stainless steel, nickel alloys, titanium and brass. The advantage of WAAM compared to other 3D metal printing processes or conventional fabrication routes are: - almost unlimited component dimension - fast and flexible adaption to design changes - high deposition rate - robust and well-known...
Abstract
View Paper
PDF
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 897-908, October 15–18, 2024,
... suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms. austenitic stainless steel creep rupture lifetime creep...
Abstract
View Paper
PDF
There is a critical lack of data on the mechanical behavior of candidate structural materials for advanced nuclear reactors under molten halide salt environments. Limited legacy data from the molten salt reactor experiment (MSRE) program showed a significant reduction in creep rupture strength of a Ni-base alloy in molten fluoride salt. With ongoing efforts to commercialize different molten salt reactor concepts, the industry can considerably benefit from quantitative information on the impact of molten halide salts on the engineering properties such as creep and fatigue strength of materials of interest. The present work aims to assess the role of molten salt corrosion on the creep behavior of three alloys 316H, 617 and 282 at 650-816 °C. Creep tests were conducted in fluoride (FLiNaK) and chloride (NaCl-MgCl 2 ) salts. Initial results from the ongoing testing will be presented which suggest that the molten salt environment caused a 25-50% reduction in creep rupture lifetime compared to air exposures. Physics-based corrosion and creep models were employed to gain some insights into the potential degradation mechanisms.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... power plants, Metallurgical Industries Press, Beijing, 2016 34 advanced ultra-supercritical fossil fire power plants heat resistant steel iron-nickel alloys martensitic stainless steel precipitation hardening nickel alloys solid-solution strengthening nickel alloys steam temperature...
Abstract
View Paper
PDF
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.