Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 46
Precipitation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 219-234, October 15–18, 2024,
Abstract
View Paper
PDF
The current research adopts a novel approach by integrating correlative microscopy and machine learning in order to study creep cavitation in an ex-service 9%Cr 1%Mo Grade 91 ferritic steel. This method allows for a detailed investigation of the early stages of the creep life, enabling identification of features most prone to damage such as precipitates and the ferritic crystal structure. The microscopy techniques encompass Scanning Electron Microscopy (SEM) imaging and Electron Back-scattered Diffraction (EBSD) imaging, providing insights into the two-dimensional distribution of cavitation. A methodology for acquiring and analysing serial sectioning data employing a Plasma Focused Ion Beam (PFIB) microscope is outlined, complemented by 3D reconstruction of backscattered electron (BSE) images. Subsequently, cavity and precipitate segmentation was performed with the use of the image recognition software, DragonFly and the results were combined with the 3D reconstruction of the material microstructure, elucidating the decoration of grain boundaries with precipitation, as well as the high correlation of precipitates and grain boundaries with the initiation of creep cavitation. Comparison between the 2D and 3D results is discussed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, October 15–18, 2024,
Abstract
View Paper
PDF
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, October 15–18, 2024,
Abstract
View Paper
PDF
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, October 15–18, 2024,
Abstract
View Paper
PDF
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 90-95, October 21–24, 2019,
Abstract
View Paper
PDF
The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase into the α-ferrite phase. One of the problems on the formation of the fine Laves phase dispersion is a poor heat treatability; the interphase precipitation (δ-Fe→γ-Fe+Fe 2 Hf) is competitive with the precipitation of Laves phase from the δ phase in the eutectoid-type reaction pathway (δ→δ+Fe 2 Hf). In the present work, the effect of supersaturation on the precipitation of Laves phase from δ phase (δ→δ+Fe 2 Hf) and the δ→γ transformation in the reaction pathway was investigated by changing the Hf and Cr contents. The results obtained suggest that it is effective to have a high supersaturation for the precipitation of Laves phase and an adequately high supersaturation for the δ→γ transformation at the same time in order to widen the window of the interphase precipitation
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 156-161, October 21–24, 2019,
Abstract
View Paper
PDF
Microstructure change during creep at 650°C has been examined for a high-B 9%Cr steel by FIB-SEM serial sectioning 3D observation, Nano-SIMS, SEM, EBSD and TEM. The precipitates formed in the steel were M 23 C 6 , Laves phase, and a quite small amount of MX. For as-tempered steel, precipitation of M 23 C 6 on the prior austenite grain boundaries was clearly found, while precipitation of the Laves phase was not confirmed during tempering. The volume fraction of the Laves phase gradually increased with elapsed time, while M 23 C 6 appeared to increase once and decrease afterward, based on the comparison between the 2,754 h ruptured sample and the 15,426 h ruptured sample. Nano-SIMS measurements have revealed that B segregates on the prior austenite grain boundaries during normalizing, and it dissolves into M 23 C 6 .
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
Abstract
View Paper
PDF
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 327-335, October 21–24, 2019,
Abstract
View Paper
PDF
High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high mechanical properties such as solid solution strengthening and precipitation hardening. However, the knowledge of the correlation between Laves phase precipitation and oxidation behavior has not clarified yet on 9Cr ferritic steels. This research will be focused on the effect of precipitation of Laves phase on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide mainly consist of wüstite on the Fe-9Cr in the initial stage while on Nb added samples magnetite was dominated. The results show that the Fe-9Cr- 2Nb alloy has a slower oxidation rate than the Fe-9Cr alloy after oxidized for 172.8 ks
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
Abstract
View Paper
PDF
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 506-512, October 21–24, 2019,
Abstract
View Paper
PDF
The relationship between the hot workability and the precipitation morphology of γ′ phase in the Alloy U520 was examined with a focus on the presence of γ′-nodule. To change the morphology of γ’ phase, forged bars of the Alloy U520 were solution treated followed by cooling process with the cooling rates of 5~100 K/h. After the heat treatment, both γ’ phases of intragranular particle and nodule along grain boundaries were observed, and the both sizes increased by slowing down the cooling rate. That is, the area fraction of γ’-nodule increased from about 0.1 % in the sample cooled at 100 K/h to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop in ductility. EBSD analysis revealed that dynamic recrystallization (DRX) was often occurred in grain interior but suppressed at γ′-nodule area, indicating that presence of γ′-nodule had a negative influence on hot workability at subsolvus temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 655-664, October 21–24, 2019,
Abstract
View Paper
PDF
18Cr-9Ni-3Cu-Nb-N steel is widely used for heat exchanger tubes such as super-heaters and reheaters of ultra-super critical power generation boilers. In this study, long-term creep rupture tests were carried out on 18Cr-9Ni-3Cu-Nb-N seamless steel tubes of 7 heat materials, and the specimens of 2 heat materials with different creep rupture strengths were observed by ultra-low voltage scanning electron microscope after creep rupture tests. The results of the investigation of the creep rupture specimens and the coverage ratios of M 23 C 6 on grain boundary were different. The cause of this was estimated to be the difference in B content between the 2 heat materials. Creep rupture tests with different final ST temperatures were also carried out using the same heat material, and it was revealed that the higher final ST temperature, the higher the creep rupture strength. As the final ST temperature is higher, the amount of Nb(C, N) solid solution in the matrix increases, and the amount of precipitation of NbCrN and M 23 C 6 increases during creep, therefore it is assumed that the creep rupture strength increases.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
Abstract
View Paper
PDF
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1145-1158, October 21–24, 2019,
Abstract
View Paper
PDF
Metallurgical factors affecting the fusion boundary failure and damage mechanism of DMWs (Dissimilar Metal Welds) between the CSEF (Creep Strength Enhanced Ferritic) steels and austenitic steels were experimentally and theoretically investigated and discussed. Long-term exservice DMWs up to 123,000 hours were investigated; the precipitates near the fusion boundary were identified and quantitatively evaluated. Comparing with the other generic Ni-based weld material, MHPS original filler metal HIG370 (Ni bal.-16Cr-8Fe-2Nb-1Mo) showed superior suppression effect on fusion boundary damage of DMWs, which was verified by both of the microstructure observation and thermodynamic calculation. Based on the microstructure observation of crept specimen and ex-service samples of DMWs, temperature, time and stress dependence of fusion boundary damage of DMWs were clarified. Furthermore, fusion boundary damage morphology and mechanism due to precipitation and local constituent depletion was discussed and proposed from metallurgical viewpoints.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1314-1321, October 21–24, 2019,
Abstract
View Paper
PDF
The nucleation and growth of precipitates such as Laves phases, carbides and nitrides reduce fracture toughness and high-temperature strength of high chromium steels used in thermal power plants. For this reason, to ensure a long-term plant reliability, it is important to estimate material deterioration by aging. The study presented in this paper involves micro structural evolution by thermal aging of COST-E, F, and FB2 steels, all turbine materials. The results indicate that the Laves phases and other precipitates can be separately detected and quantified by the electrochemical technique. The results also clarify the correlation between the amount of Laves phases precipitated and electrochemical polarization parameters.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1361-1372, October 21–24, 2019,
Abstract
View Paper
PDF
A trial weld joint of COST F and COST FB2 steels was produced using the GTAW HOT-WIRE method in conditions used in industry for production of welding steam turbine rotors. Conventional long-term creep tests (CCT) to the rupture of this weldment and the base materials were carried out at temperatures ranging from 550 °C to 650 °C in the stress range from 70 to 220 MPa (the longest time to rupture was above 52,000 hours). Creep rupture strength was evaluated using Larson-Miller parameter model. Assessment of microstructure was correlated with the creep strength. Precipitation of Laves phase and structure recovery during creep exposures were the main reasons for the failure which occurred in the heat affected zone of steel COST F. The recently developed simulative accelerated creep testing (ACT) on thermal-mechanical simulator allows the microstructural transformation of creep-resisting materials in a relatively short time to a state resembling that of multiyear application under creep conditions. ACT of samples machined from various positions in the weldment was performed at 600 °C under 100 MPa. Changes in the hardness and the microstructures of the samples, which underwent both types of creep tests, were compared. Small sample creep test (SPCT), another alternative method how to obtain information about the creep properties of materials when only a limited amount of test material is at disposal, were performed. It was shown that the same stress-temperature dependence and relationships are valid in the SPCT as in the CCT. Using a simple load-based conversion factor between the SPCT test and the CCT test with the same time to rupture, the results of both test types can be unified.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1373-1379, October 21–24, 2019,
Abstract
View Paper
PDF
NiAl precipitates with the B2 structure are known to be effective in increasing the strength of ferritic heat-resistant steels. The strengthening mechanism by the NiAl precipitates was examined using Fe-21Al-2Ni and Fe-23Al-6Ni (at%) single crystals. As a result, the difference in primary slip system between the bcc matrix and the NiAl precipitates is responsible for strong hardening. The B2-NiAl phase was precipitated in the bcc matrix satisfying the cube-on-cube orientation relationship with small misfit strain. The primary slip direction of the bcc matrix and the NiAl precipitates are <111> and <001>, respectively. However, in the ferritic alloys, the NiAl precipitates were cut by paired 1/2<111> dislocations in the bcc matrix, resulting in the hardening. The size and volume fraction of the NiAl precipitates strongly influenced the strength. The stress increase by the NiAl precipitates was also discussed quantitatively based on the precipitation hardening theory. Based on the experimental results obtained by the single crystal study, we developed Fe-Al-Ni-Cr-Mo ferritic heat-resistant alloy containing the NiAl precipitates. The alloy exhibited excellent creep properties at 923 K.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1408-1417, October 21–24, 2019,
Abstract
View Paper
PDF
The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through experimental study at different temperatures and thermokinetic calculation. The steel samples were prepared by arc melting followed by 65% cold rolling. Subsequently, the samples were solution treated within the γ single-phase region to control the grain size to approximately 150 μm. Aging of the solution-treated samples was carried out at temperatures ranging from 973 K to 1473 K for up to 3600 hours. Microstructural observations were conducted using FE-SEM, and the chemical compositions of the γ matrix and precipitates of Laves and δ phases were analyzed using EPMA. The precipitation modeling was performed using MatCalc software, utilizing a thermodynamic database constructed by our research group to calculate the chemical potential of each phase. Classical nucleation theory was applied for nucleation, while the SFFK model was employed for the growth and coarsening stages. Distinct phases were defined for grain boundary and grain interior Laves phase, with all precipitates assumed to have spherical morphology in the calculations. The precipitation start time was defined as the time when the precipitate fraction reached 1%. Experimental results indicated that above 973 K, Laves phase nucleation primarily occurred on grain boundaries before extending into the grain interior, with the nose temperature located around 1273 K. To replicate the experimentally determined Time-Temperature-Precipitation (TTP) diagram, interaction parameters among elements were adjusted. Additionally, by introducing lower interfacial energy between the γ matrix and Laves phase, the TTP diagram was successfully reproduced via calculation, suggesting relative stability at the interface.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 224-234, October 11–14, 2016,
Abstract
View Paper
PDF
Recently, a γ’ precipitation strengthened Ni-base superalloy, USC141, was developed for 700°C class A-USC boiler tubes as well as turbine blades. In boiler tube application, the creep rupture strength of USC141 was much higher than that of Alloy617, and the 105 hours’ creep rupture strength of USC141 was estimated to be about 180MPa at 700°C. This is because fine γ’ particles precipitate in austenite grains and some kinds of intermetallic compounds and carbides precipitate along austenite grain boundaries during creep tests. Good coal ash corrosion resistance is also required for tubes at around 700°C. It is known that coal ash corrosion resistance depends on the contents of Cr and Mo in Ni-base superalloys. Therefore the effect of Cr and Mo contents in USC141 on coal ash corrosion resistance, tensile properties, and creep rupture strengths were investigated. As a result, the modified USC141 containing not less than 23% Cr and not more than 7% Mo showed better hot corrosion resistance than the original USC141. This modified alloy also showed almost the same mechanical properties as the original one. Furthermore the trial production of the modified USC141 tubes is now in progress.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
Abstract
View Paper
PDF
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 283-294, October 11–14, 2016,
Abstract
View Paper
PDF
For raising thermal efficiency and decreasing CO 2 emission, China had constructed the first 600°C ultra-supercritical(USC) fossil power plant in 2006. Now more than a hundred 600°C, 1000MW USC electric power units have been put in service. Recently, China has also developed 620°C USC power units and some of them have been put in service already. Meanwhile, more than fifty 620°C USC boilers will be produced by various China boiler companies. The austenitic steels TP347H, Super304H and HR3C are routinely used for 600°C USC boilers. Among these steels, a big amount of Super304H has been used for boiler superheater/reheater components application. However, Super304H is characterized by good stress-rupture strength but poor corrosion/oxidation resistance. On the other side, HR3C is characterized by very good corrosion/oxidation resistance but lower stress-rupture strength than Super304H. Now, the China 620°C USC project needs a new austenitic heat resisting steel with high stress-rupture strength and good corrosion/oxidation resistance to fulfill the superheater/reheater tube components application requirement. A new austenitic heat resisting steel SP2215 is based on 22Cr-15Ni with certain amount of Cu and also Nb and N for multiphase precipitation (MX, Cu-rich phase, NbCrN) strengthening in Fe-Cr-Ni austenitic matrix and M 23 C 6 carbide precipitation at grain boundaries. This SP2215 new austenitic steel is characterized by high stress-rupture strength (650°C, 105h>130MPa) and good corrosion/oxidation resistance. SP2215 austenitic steel has been commercially produced in tube product form. This SP2215 new austenitic heat-resisting steel is recommended to be used as superheater/reheater components for 620°C USC boiler application.
1