Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Phase equilibria
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1402-1407, October 21–24, 2019,
Abstract
View Papertitled, Effect of Carbon in Solution on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
View
PDF
for content titled, Effect of Carbon in Solution on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
Interstitial carbon (C) in β-Ti, α-Ti, α 2 -Ti 3 Al and γ-TiAl phases present in the γ-TiAl alloys with and without substitutional elements (M: transition element) is quantitatively analyzed using soft X-ray emission spectroscopy (SXES), in order to reveal the effect of solute carbon on the phase equilibria. SXES for carbon analysis was used and the peak intensity of the second reflection of carbon Kα is analyzed using the fully homogenized sample having different C content under the optimum condition to make the accurate calibration curves. The obtained calibration curve is in an accuracy of ± 0.07 at. % C. In all heat treated alloys, no carbide is observed. In Ti-Al binary system, the α+γ phase region shifts toward higher Ti side, and the volume fraction of γ phase increases slightly with the carbon addition. In all system, carbon preferentially partitions into the α phase, followed by less partitioning in the γ and β phases in order. The carbon content in the β phase remains unchanged of almost 0.05 at. % regardless of carbon addition in Ti-Al-V system and the partition coefficient of carbon between the α and γ phases becomes larger in Ti-Al-V system than that in TiAl binary system.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1436-1445, October 21–24, 2019,
Abstract
View Papertitled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on Phase Diagram Study at Elevated Temperature
View
PDF
for content titled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on Phase Diagram Study at Elevated Temperature
Strengthening of Ni-based superalloys is in principle designed using GCP (Geometrically Close-packed phase) of Ni 3 Al-γ' (L1 2 ). However, game-changing microstructural design principle without relying on γ' phase will be needed for further development of the alloys. We are currently constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K, based on experiment and calculation. In Ni-Cr-Mo system, Ni 2 (Cr, Mo) with oP6 Pearson symbol, which is stable at about 873 K in Ni-Cr binary system, is formed to exist even at 1073 K. oP6 phase is coherently formed in A1 matrix with a crystallographic orientation of {110} A1 // (100) oP6 , <001>Α1 // [010]oP6, indicating GCP at composition range around Ni-15Cr-15Mo as island. In Mo-rich region there is Α1/NiMo/oP6 three-phase coexisting region, whereas another three-phase coexisting region of Α1/P/oP6 exists in Cr-rich region. Based on vertical section, it is possible to design microstructure with TCP at grain boundaries, together with oP6 phase within grain interiors by two-step heat treatment.