Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-9 of 9
Martensite
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 217-226, October 21–24, 2019,
Abstract
View Papertitled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
View
PDF
for content titled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
9-10%Cr-3%Co martensitic steels are the prospective materials for elements of boilers, tubes and pipes for fossil power plants which are able to work at ultra-supercritical parameters of steam (T=620-650°C, P=25-30 MPa). The effect of creep on the microstructure of the 10 wt.%Cr-3Co- 3W-0.2Re martensitic steel was investigated in the condition of 650°C and an applied stress of 140 MPa, time to rupture was more than 8500 h. Previously, this steel was subjected to the normalizing at 1050°C and tempering at 770°C. This heat treatment provided the hierarchical tempered martensite lath structure with the mean size of prior austenite grains of 59 μm and with high dislocation density (2×10 14 m -2 ) within martensitic laths. Boundary M 23 C 6 and M 6 C carbides and randomly distributed within matrix Nb-rich MX carbonitrides were detected after final heat treatment. The addition of Re in the steel studied positively affected creep at 650°C/140 MPa and stabilized the tempered martensite lath structure formed during 770°C-tempering. The formation of the subgrains in the gage section was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase with fine sizes during creep. No depletion of Re and Co from the solid solution during creep was revealed whereas W content decreased from 3 to 1 wt.% for first 500 h of creep. Reasons of improved creep as well as mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 72-85, August 31–September 3, 2010,
Abstract
View Papertitled, Advances in Materials Technology for A-USC Power Plant Boilers
View
PDF
for content titled, Advances in Materials Technology for A-USC Power Plant Boilers
Recent advances in materials technology for boilers materials in the advanced USC (A-USC) power plants have been reviewed based on the experiences from the strengthening and degradation of long term creep properties and the relevant microstructural evolution in the advanced high Cr ferritic steels. P122 and P92 type steels are considered to exhibit the long term creep strength degradation over 600°C, which is mainly due to the instability of the martensitic microstructure strengthened too much by MX carbonitrides. This can be modified by reducing the precipitation of VN nitride and by optimizing the Cr content of the steels. An Fe-Ni based alloy, HR6W strengthened by the Fe2W type Laves phase is found to be a marginal strength level material with good ductility at high temperatures over 700°C and to be used for a large diameter heavy wall thick piping such as main steam pipe and hot reheat pipe in A-USC plants, while Ni-Co based alloys such as Alloys 617 and 263 strengthened by a large amount of the y’ phase are found to be the high strength candidate materials for superheater and reheater tubes, although they are prone to relaxation cracking after welding and to grain boundary embrittlement during long term creep exposure. A new Ni based alloy, HR35 strengthened by a-Cr phase and other intermetallic phases has been proposed for piping application, which is specially designed for a good resistance to relaxation cracking as well as high strength and a good resistance to steam oxidation and fire-side corrosion at high temperatures over 700°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 654-666, August 31–September 3, 2010,
Abstract
View Papertitled, Microstructural Degradation during High Temperature Exposure Up to 10 5 h and Its Effects on Creep of Grade 91 Steel
View
PDF
for content titled, Microstructural Degradation during High Temperature Exposure Up to 10 5 h and Its Effects on Creep of Grade 91 Steel
A study of Grade 91 steel's creep rupture behavior at 600°C (up to 90,000 hours) and 650°C (up to 23,000 hours) reveals that static recovery of tempered martensite lath structures leads to decreased stress exponent and breakdown of creep strength. While M 23 C 6 and MX particles initially stabilize lath structures by hindering sub-boundary migration, the progressive aggregation of M 23 C 6 particles reduces their pinning force, triggering static recovery. Although Grade 91 steel shows better M 23 C 6 thermal stability compared to Grade 122 type steels (9-12%Cr-2W-0.4Mo-1Cu-VNb), coarsening of M 23 C 6 particles and subgrain width is expected to occur slightly beyond 100,000 hours at 600°C, potentially leading to creep strength breakdown.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 667-678, August 31–September 3, 2010,
Abstract
View Papertitled, Effects of Variation of Phase Chemistry on Multi-Region Stress Rupture Properties at 625°C for P92 Steel
View
PDF
for content titled, Effects of Variation of Phase Chemistry on Multi-Region Stress Rupture Properties at 625°C for P92 Steel
A study of P92 steel's creep-rupture behavior at 625°C revealed distinct relationships between phase chemistry and stress rupture properties across two regions: high-stress/short-term (180-150 MPa for 30-454 h) and low-stress/long-term (140-110 MPa for 2881-10,122 h). Using EPMA-EDS with Multiphase Separation Method (MPSM), researchers analyzed how M 23 C 6 and Laves phase coarsening and chemistry (focusing on Cr, W, and Mo distribution) varied between these regions. This multi-region analysis established a framework for more efficient creep testing and improved extrapolation of short-term results to predict long-term rupture strengths, while providing reference phase chemistry data for future studies.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
Abstract
View Papertitled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
View
PDF
for content titled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 191-201, October 25–28, 2004,
Abstract
View Papertitled, Innovative Research and Development of Heat Resistant Structural Materials for USC Power Plants
View
PDF
for content titled, Innovative Research and Development of Heat Resistant Structural Materials for USC Power Plants
Achieving long-term stability of the tempered martensite is considered crucial for increasing the creep resistance of steels at elevated temperatures above 700°C. It is noted that at low stress levels, the creep deformation of the tempered martensite proceeds heterogeneously around prior austenite grain boundaries, as excess dislocations inside the grain are difficult to rearrange. This paper presents a new approach using carbon-free martensitic alloys strengthened by intermetallic compounds. An iron-nickel-cobalt martensite matrix with Laves phase as the precipitate is selected. The creep characteristics are discussed across a wide range of testing conditions, and the thermal cycle test behavior is examined to evaluate the potential of these alloys for future ultrasupercritical power plants operating in severe environments.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 202-216, October 25–28, 2004,
Abstract
View Papertitled, Alloy Design of Creep and Oxidation Resistant 9Cr Steels for Thick Section Boiler Components Operating at 650°C
View
PDF
for content titled, Alloy Design of Creep and Oxidation Resistant 9Cr Steels for Thick Section Boiler Components Operating at 650°C
To enhance long-term creep strength at 650°C, stabilization of the lath martensitic microstructure near prior austenite grain boundaries has been investigated for a 9Cr-3W-3Co-0.2V-0.05Nb steel. This was achieved by adding boron to stabilize M 23 C 6 carbides and dispersing fine MX nitrides. Creep tests were conducted at 650°C for up to approximately 3 × 10 4 hours. Adding a large amount of boron exceeding 0.01%, combined with minimized nitrogen, effectively stabilized the martensitic microstructure and improved long-term creep strength. The amount of available boron, free from boron nitrides and tungsten borides, is crucial for enhancing long-term creep strength. Reducing the carbon concentration below 0.02% led to a dispersion of nano-sized MX nitride particles along boundaries and in the matrix, resulting in excellent creep strength at 650°C. A critical issue for the 9Cr steel strengthened by MX nitrides is the formation of Z-phase, which degrades long-term creep strength. Excess nitrogen additions of 0.07 and 0.1% promoted Z-phase formation during creep. The formation of a protective Cr-rich oxide scale was achieved through a combination of Si addition and pre-oxidation treatment in argon, significantly improving the oxidation resistance in steam at 650°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 231-246, October 25–28, 2004,
Abstract
View Papertitled, Practical Experience with Advanced Steels
View
PDF
for content titled, Practical Experience with Advanced Steels
With the desire for higher operating temperatures and pressures to improve the thermal efficiency of new power generating plant there have been significant changes in the materials used. For operation up to 620°C, a new range of ferritic steels with 9-13%Cr has been developed. With proper control of composition and heat treatment these materials, including Grades 91 and 92,exhibit predominantly martensitic microstructures and a good balance between strength and ductility. However, fabrication processes such as welding and bending, normally combined with extreme operating conditions have resulted in in-service damage. Examples of factors leading to accelerated creep, creep fatigue and oxidation damage are described.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
Abstract
View Papertitled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
View
PDF
for content titled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
Effects of Ni content and heat treatment condition on impact toughness and creep strength of precipitation strengthened 15Cr ferritic steels were investigated in order to discuss a possibility of improvement in both mechanical properties. Both creep strength and impact toughness of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed in the Ni added steels, and such microstructure reduced the precipitation strengthening effect slightly. On the other hand, increase in impact values of the steel indicated no relation to volume fraction of martensite phase. It was supposed that the impact toughness of ferrite phase itself was improved by solid solution treatment and addition of Ni.